
0/16

Statistical Verification of Distributed Programs Within SimGrid

Yann Duplouy

Inria Nancy Grand Est

Monday, May 13th 2019



0/16

Context
SimGrid
Statistical model-checking
My previous Work

Current Progress
BitTorrent example
Outside scenario generation
Modifying SimGrid to have a consistent RNG

Conclusion



1/16

Distributed Programs

Definition (Distributed Systems)
A distributed system is a collection of components that can interact with one
another and may be partly indepent or concurrent.

Definition (Distributed Program)
A distributed program is an application that runs on a distributed system.



1/16

Distributed Programs

Definition (Distributed Systems)
A distributed system is a collection of components that can interact with one
another and may be partly indepent or concurrent.

Definition (Distributed Program)
A distributed program is an application that runs on a distributed system.



2/16

What is SimGrid ?

SimGrid is a software platform for the simulation of distributed programs.

I Open-source and available for free on http://simgrid.org;

I C++ (or Java) library;

Subprogram A

Subprogram B

Subprogram C

http://simgrid.org


2/16

What is SimGrid ?

SimGrid is a software platform for the simulation of distributed programs.

I Open-source and available for free on http://simgrid.org;

I C++ (or Java) library;

Subprogram A

Subprogram B

Subprogram C

http://simgrid.org


2/16

What is SimGrid ?

SimGrid is a software platform for the simulation of distributed programs.

I Open-source and available for free on http://simgrid.org;

I C++ (or Java) library;

Subprogram A

Subprogram B

Subprogram C

http://simgrid.org


2/16

What is SimGrid ?

SimGrid is a software platform for the simulation of distributed programs.

I Open-source and available for free on http://simgrid.org;

I C++ (or Java) library;

Subprogram A

Subprogram B

Subprogram C

http://simgrid.org


2/16

What is SimGrid ?

SimGrid is a software platform for the simulation of distributed programs.

I Open-source and available for free on http://simgrid.org;

I C++ (or Java) library;

Subprogram A

Subprogram B

Subprogram C

A

B

C

B

C

http://simgrid.org


3/16

Stochastic models

Problem: «Reality is not perfect»

Idea: Model imperfection by probabilistic laws

Where ?
I Bandwidth of a link;

I Computation power;

I Latency of a link.



4/16

Different kinds of analysis

Transient analysis
I What is the probability that at a given moment all computers are busy ?

I How long, in average, does it take for the distributed program to complete ?

Stationary analysis
I What is the average energy consumption ?

I What is the probability of a synchronisation error ?



5/16

Two methods for model-checking of probabilistic models

Numerical model-checking
I Precise values
I Strong probabilistic hypotheses
I Large memory space

Statistical model-checking
I Confidence interval
I Small memory requirements
I Easy to parallelize
I Weak probabilistic hypothesis
I Requires fully stochastic models
I Rare Event problem



5/16

Two methods for model-checking of probabilistic models

Numerical model-checking
I Precise values
I Strong probabilistic hypotheses
I Large memory space

Statistical model-checking
I Confidence interval
I Small memory requirements
I Easy to parallelize
I Weak probabilistic hypothesis
I Requires fully stochastic models
I Rare Event problem



6/16

Cosmos

Description [Ballarini, Barbot, Duflot, Haddad, Pekergin 2015]
I Statistical model-checker for HASL over stochastic Petri nets;

I Free software (GPLv3); C++, Ocaml; http://cosmos.lacl.fr;

I Developers: Hilal Djafri (2009-2012), Paolo Ballarini (2010-2011), Benoît Barbot
(since 2011), Yann duplouy (2015-2018).

Main Applications
I Flexible manufacturing systems;

I Biological networks [Barbot, Kiatkowska 2015];

I Embedded pacemaker model [Barbot, Kwiatkowska, Mereacre, Paoletti 2015].

http://cosmos.lacl.fr


7/16

Cosmos
Refresher on Petri nets

UNIF(0,1)

e1

UNIF(0,1)

e2

Stochastic PN

a
b
c

Processus

1
2

Ressources
Acquisition

High-level PN

<x>

<y>

<x,y>



7/16

Cosmos
Refresher on Petri nets

UNIF(0,1)

e1

UNIF(0,1)

e2

Stochastic PN

a
b
c

Processus

1
2

Ressources
Acquisition

High-level PN

<x>

<y>

<x,y>



7/16

Cosmos
Refresher on Petri nets

UNIF(0,1)

e1

UNIF(0,1)

e2

Stochastic PN

a c

Processus

P1

1

Ressources

P2

Acquisition

(b,2)

P3

High-level PN

<x>

<y>
<x,y>



8/16

Cosmos
HASL – Illustrated by example

HASL formulas
A deterministic hybrid automaton and an expression

ẋ = 1
ẏ = 0
s0

ẋ = 0
ẏ = 1
s1

s2

s3

e1
e2; x2 + y2 ≤ 1; r := 4

e2; x 2 + y 2 > 1; r := 0

E(LAST(r))

1

1

x

y
UNIF(0,1)

e1

UNIF(0,1)

e2



8/16

Cosmos
HASL – Illustrated by example

HASL formulas
A deterministic hybrid automaton and an expression

ẋ = 1
ẏ = 0
s0

ẋ = 0
ẏ = 1
s1

s2

s3

e1
e2; x2 + y2 ≤ 1; r := 4

e2; x 2 + y 2 > 1; r := 0

E(LAST(r))

1

1

x

y
UNIF(0,1)

e1

UNIF(0,1)

e2



8/16

Context
SimGrid
Statistical model-checking
My previous Work

Current Progress
BitTorrent example
Outside scenario generation
Modifying SimGrid to have a consistent RNG

Conclusion



9/16

An overview of the BitTorrent protocol

Goal: Deliver a file through a peer-to-peer protocol;

Tracker Peer 1 Peer 2 Peer 3 . . .

. . .

I A tracker

I Multiple peers, that can be seeders or leechers

Example available in Simgrid distribution; modified to measure completion time.



10/16

Outside scenario generation

Another executable or script:

I Generate environments, given the stochastic description;

I Runs the simulator;

I Gather results from simulations.

Then we can use R (or other tools) to perform statistical analysis.

Python scriptSimulator



10/16

Outside scenario generation

Another executable or script:

I Generate environments, given the stochastic description;

I Runs the simulator;

I Gather results from simulations.

Then we can use R (or other tools) to perform statistical analysis.

Python scriptSimulator

Platform DeploymentPlatform Deployment



10/16

Outside scenario generation

Another executable or script:

I Generate environments, given the stochastic description;

I Runs the simulator;

I Gather results from simulations.

Then we can use R (or other tools) to perform statistical analysis.

Python scriptSimulator

Platform Deployment



10/16

Outside scenario generation

Another executable or script:

I Generate environments, given the stochastic description;

I Runs the simulator;

I Gather results from simulations.

Then we can use R (or other tools) to perform statistical analysis.

Python scriptSimulator

Platform Deployment

ResultsResults



10/16

Outside scenario generation

Another executable or script:

I Generate environments, given the stochastic description;

I Runs the simulator;

I Gather results from simulations.

Then we can use R (or other tools) to perform statistical analysis.

Python scriptSimulator

Platform Deployment

ResultsResults



11/16

Quick results 1/2

Measuring average completion time (with 95% confidence level)

leechers
25MB/s Uint(1024, 8191)kB/s

se
ed
er
s 25
M
B/

s

324s 704s

U i
nt

(1
02

4,
81

91
)
kB

/s

321s 710s



12/16

Quick results 2/2

Introducing failures, generated up to 600 000 seconds:
1. Host becomes unavailable after EXP(1000)

2. Host becomes availables again after UNIF(10, 20), repeat (1.)
All peers are connected to the backbone at 4 kBps.

I if only seeders have failures:
most (99%) simulations run under 660s,
average simulation time 613s;
but slowest simulation took 12 209 seconds;

I if seeders and leechers have failures:
most (99%) simulations run under 704s,
average simulation time 850s;
but slowest took 623 624 seconds;



12/16

Quick results 2/2

Introducing failures, generated up to 600 000 seconds:
1. Host becomes unavailable after EXP(1000)

2. Host becomes availables again after UNIF(10, 20), repeat (1.)
All peers are connected to the backbone at 4 kBps.

I if only seeders have failures:
most (99%) simulations run under 660s,
average simulation time 613s;
but slowest simulation took 12 209 seconds;

I if seeders and leechers have failures:
most (99%) simulations run under 704s,
average simulation time 850s;
but slowest took 623 624 seconds;



13/16

A cleaner approach ?

Add a few SimGrid modules:
I Modify the profile class to accept stochastic definitions

I Implement a statistical verification class:
Measure an approximation of performance indexes
Allow to restart simulations without multiple external calls to the simulator



14/16

Specification of probabilities

I Profiles describe how capacities deterministically change;

I ⇒ Stochastic Profiles allow for stochastic descriptions.

Platforms now accept stochastic profiles.



14/16

Specification of probabilities

I Profiles describe how capacities deterministically change;

I ⇒ Stochastic Profiles allow for stochastic descriptions.

Platforms now accept stochastic profiles.



14/16

Specification of probabilities

I Profiles describe how capacities deterministically change;

I ⇒ Stochastic Profiles allow for stochastic descriptions.

Platforms now accept stochastic profiles.



15/16

Running multiple times

SimGrid +P

Platform +P

Deployment



15/16

Running multiple times

SimGrid +P

Platform +P

Deployment



15/16

Running multiple times

SimGrid +P

Platform +P

Deployment

Results



15/16

Context
SimGrid
Statistical model-checking
My previous Work

Current Progress
BitTorrent example
Outside scenario generation
Modifying SimGrid to have a consistent RNG

Conclusion



16/16

Conclusion

SimGrid is good for reproducible scenarios, but real scenarios are unpredictable

I Generating scenarios and deterministic profiles is inconvenient at best;

I Adding a module dedicated to statistical verification is a cleaner approach;

I Modifying the profile class is a first step;

I Restarting simulation properly is currently in progress;

I Implementing HASL into SimGrid would increase hugely the expressivity.


	Context
	SimGrid
	Statistical model-checking
	My previous Work

	Current Progress
	BitTorrent example
	Outside scenario generation
	Modifying SimGrid to have a consistent RNG

	Conclusion

