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Distributed Programs

Definition (Distributed Systems)
A distributed system is a collection of components that can interact with one
another and may be partly indepent or concurrent.

Definition (Distributed Program)
A distributed program is an application that runs on a distributed system.
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What is SimGrid ?

SimGrid is a software platform for the simulation of distributed programs.

I Open-source and available for free on http://simgrid.org;

I C++ (or Java) library;

Subprogram A

Subprogram B

Subprogram C

http://simgrid.org
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Stochastic models

Problem: «Reality is not perfect»

Idea: Model imperfection by probabilistic laws

Where ?
I Bandwidth of a link;

I Computation power;

I Latency of a link.
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Different kinds of analysis

Transient analysis
I What is the probability that at a given moment all computers are busy ?

I How long, in average, does it take for the distributed program to complete ?

Stationary analysis
I What is the average energy consumption ?

I What is the probability of a synchronisation error ?
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Two methods for model-checking of probabilistic models

Numerical model-checking
I Precise values
I Strong probabilistic hypotheses
I Large memory space

Statistical model-checking
I Confidence interval
I Small memory requirements
I Easy to parallelize
I Weak probabilistic hypothesis
I Requires fully stochastic models
I Rare Event problem
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Cosmos

Description [Ballarini, Barbot, Duflot, Haddad, Pekergin 2015]
I Statistical model-checker for HASL over stochastic Petri nets;

I Free software (GPLv3); C++, Ocaml; http://cosmos.lacl.fr;

I Developers: Hilal Djafri (2009-2012), Paolo Ballarini (2010-2011), Benoît Barbot
(since 2011), Yann duplouy (2015-2018).

Main Applications
I Flexible manufacturing systems;

I Biological networks [Barbot, Kiatkowska 2015];

I Embedded pacemaker model [Barbot, Kwiatkowska, Mereacre, Paoletti 2015].

http://cosmos.lacl.fr
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Cosmos
Refresher on Petri nets
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Cosmos
HASL – Illustrated by example

HASL formulas
A deterministic hybrid automaton and an expression
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ẏ = 0
s0
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An overview of the BitTorrent protocol

Goal: Deliver a file through a peer-to-peer protocol;

Tracker Peer 1 Peer 2 Peer 3 . . .

. . .

I A tracker

I Multiple peers, that can be seeders or leechers

Example available in Simgrid distribution; modified to measure completion time.
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Outside scenario generation

Another executable or script:

I Generate environments, given the stochastic description;

I Runs the simulator;

I Gather results from simulations.

Then we can use R (or other tools) to perform statistical analysis.

Python scriptSimulator
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Quick results 1/2

Measuring average completion time (with 95% confidence level)
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Quick results 2/2

Introducing failures, generated up to 600 000 seconds:
1. Host becomes unavailable after EXP(1000)

2. Host becomes availables again after UNIF(10, 20), repeat (1.)
All peers are connected to the backbone at 4 kBps.

I if only seeders have failures:
most (99%) simulations run under 660s,
average simulation time 613s;
but slowest simulation took 12 209 seconds;

I if seeders and leechers have failures:
most (99%) simulations run under 704s,
average simulation time 850s;
but slowest took 623 624 seconds;
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A cleaner approach ?

Add a few SimGrid modules:
I Modify the profile class to accept stochastic definitions

I Implement a statistical verification class:
Measure an approximation of performance indexes
Allow to restart simulations without multiple external calls to the simulator
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Specification of probabilities

I Profiles describe how capacities deterministically change;

I ⇒ Stochastic Profiles allow for stochastic descriptions.

Platforms now accept stochastic profiles.
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Running multiple times

SimGrid +P

Platform +P

Deployment
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Conclusion

SimGrid is good for reproducible scenarios, but real scenarios are unpredictable

I Generating scenarios and deterministic profiles is inconvenient at best;

I Adding a module dedicated to statistical verification is a cleaner approach;

I Modifying the profile class is a first step;

I Restarting simulation properly is currently in progress;

I Implementing HASL into SimGrid would increase hugely the expressivity.
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