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INTRODUCTION

Context

The population growth in most countries, alongside with the increased distance from
home to activities, have led to an ever increasing demand in transportation systems.
While train and steam buses exist from the industrial age, the invention of personal
cars has drastically changed the behaviour of the travelers. More precisely, with the
introduction of the Ford Model T in 1908, automobiles became affordable for the
middle-class, introducing a better option than public transportation. Unfortunately,
the increasing car traffic has triggered some issues: driving induces strain, the
increasing number of accidents is a major preoccupation for public safety, and the
circulation conditions are degrading. In order to address these issues, a range of
advanced driver-assistance systems have been introduced thanks to breakthrough
in computation power and electronics.

Today, smartphones and mobile networks enable communication while traveling.
However, drivers have to focus on the road circulation. So the next step is to
make personal cars capable of performing the entire process of of going to some
destination: the so-called autonomous vehicles (or self-driving cars). It could even
be a part of public transportation, such as the planned night shuttle between
Massy and Polytechnique [30]. Waymo and Tesla are known to be pioneers in fully
driver-less vehicles ([44], [61]), but it is now a concern of all car manufacturers.
Obviously, these companies want to sell these new vehicles to the general public.
But this requires ensuring that such vehicles do not increase the risk of accidents,
nor pose a threat to the life of their owners. Since the question of safety has an high
societal impact and is difficult to solve, most companies want to let their vehicles
drive enough kilometers, in order to have sufficient data and design improvements.
However, this comes with a huge legislation problem: they must have the right
to drive those possibly dangerous cars. In France, the autonomous vehicles are
limited to small portions of motorways [62], which can only be a benchmark for
Trafic Jam Controllers. In the United States, the companies started to test their

iii



iv INTRODUCTION

autonomous vehicles in California and Texas, but this had led to several accidents
and the public opinion became uncomfortable with the matter.

Similarly to the crash tests for the safety of drivers and passengers during a
crash (which is now entirely done, in Europe, via EURO NCAP test benches [38]),
this requires a shift to more abstract verification methods. Such approach has two
advantages: first, it does not take as much time nor money to get the target precision
on the crash rate (10−9 crashes every 100km driven), and most importantly it does
not involve taking any vital risk, and formal verification offers better guarantees
than testing [22].

Related works. Since an autonomous vehicle is very complex by nature, any
direct verification task is extremely difficult. Hence, researchers have defined and
tackled many subproblems, like: the effects of weather perturbation on sensors [60],
the detection of road signs [65] and other entities [67], inter-vehicle communica-
tion [66], human-vehicle interaction [54], design of controllers for road parts [25]
and for the single vehicle.

In this thesis, we focus on the verification of such controllers. Several related
works will be presented in Chapter 2. They can be classified according to two
criteria:

• Geometrical versus logical. In the former case, the behaviour of the vehicles in
a small time interval is modeled by the set of all positions they occupy, using
differential equations, and a check is performed on the interserction of these sets;
In the latter case, the expected properties on vehicles and roads are formalised
as logical constraints, which are then solved by existing tools.

• Synthesis versus verification. In the former case, a controller satisfying the
expected properties is automatically generated. In the latter case, the expected
properties are checked on an already existing controller.

Objectives

This PhD thesis takes place in the IRT SystemX project Simulation pour la Sécurité
du Véhicule Autonome [68], whose aim is to provide simulation methods ensuring the
safety of autonomous vehicles. This project includes as partners various automobile
manufacturers such as PSA Peugeot Citroën and Renault, but also suppliers such
as Continental and Valeo. It is also in partnership with software developers, such
as ANSYS, Oktal, Apsys-Airbus. In this thesis, we propose a statistical model-
checking based approach which could be used by automobile manufacturers who
design controllers of autonomous vehicles.

More precisely, our objectives are as follows.
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Formalism. As a first step, it is necessary to model the scenarios for autonomous
vehicles with an appropriate formalism. This formalism should be expressive enough
for quantifying risks and describing various situations. High-level stochastic Petri
nets (see for instance [31]) are such a candidate. However, it misses some features of
cyber-physical systems such as continuous evolution that occurs in these scenarios.
Thus, our first objective is to extend the high-level stochastic nets to include these
features.

Simulink® Integration. The industrial partners of the project use Simulink as
a modeling tool to design controllers for their autonomous vehicles. This choice
is motivated by the sheer number of toolboxes and simulation tools that can be
connected to Matlab-Simulink, namely SCANeR (developed by Oktal, partner
of the project) that serves as another tool for the simulation in the SVA project.
However, the input formalism of Simulink is not compatible with Cosmos, and
the documentation given by MathWorks is at best incomplete. Thus, this requires
to define a formal operational semantics for Simulink. Such a semantics could be
useful outside the scope of the project, emphasizing the interest of this objective.
Moreover, we want to combine the high-level Petri nets with Simulink to introduce
a new stochastic hybrid system formalism that could entirely describe controlled
vehicle case studies.

Cosmos Implementation. These formalisms should then be implemented into
Cosmos in order to run simulations and produce relevant performance indices.
This requires to also study scalability issues, and undesirable features like the rare
event phenomenon, which leads to our final objective.

Empirical validation. The final objective is to design case studies that illustrate
the capacities of the newly designed formalism in the context of autonomous vehicle
verification. This brings two main questions: Are we able to model realistic
scenarios with this formalism? Are the performances of the simulation efficient
enough to manage the analysis of the case studies in an iterative process?

Organisation
This thesis is divided in two parts and five chapters.

Part I - Context. The first chapter gives a background of the computer science
and mathematical concepts about formal verification. It is mostly theoretical,
but also gives a comparison between various tools for statistical model-checking,
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enforcing the choice of Cosmos in the thesis. The second chapter is a brief state-of-
the-art on approaches for the control of autonomous vehicles.

Part II - Contributions. The third chapter is dedicated to the definition of
an operational semantics for Simulink models, and proceeds in three steps: first,
we define a proper syntax for the block diagrams of Simulink. Secondly, we
define an exact semantics which will be used as a target for the accuracy of the
operational semantics. Finally, we define an operational semantics in the form of
an algorithm. The fourth chapter starts by a brief description of Cosmos workflow,
then presents the extensions brought to Cosmos. We then show how, and when, the
performances for high-level nets have been largely improved. Finally, we explain
how our operational semantics for Simulink were integrated into the tool, and how
the model combining high-level stochastic Petri nets and Simulink is handled via a
multi-model simulation on a single queue. Finally, the last chapter presents two
case studies: the first one is a heavy traffic on a motorway; the second one is an
entrance ramp.
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Context
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CHAPTER 1
MODELING AND ANALYSIS OF CYBERPHYSICAL

SYSTEMS

Abstract. A cyberphysical system consists of a physical part handled by a set
of softwares. The analysis of such a system requires three stages. First one has
to specify it based on some formal model. Then the expected properties must
be expressed in some logic. Once the two stages are achieved, the model and
the formulas are provided as inputs of a model-checker that verifies whether the
formulas are satisfied by the model and in the negative case produces some counter-
example. Figure 1.1 depicts this process. The system designer must select an
appropriate formalism depending on the features that occur in the system (discrete
and/or continuous time, discrete and/or continuous space, non deterministic and/or
probabilistic behavior, etc.). So we present several formalisms for system modelling
in Section 1.1. Similarly in Section 1.2 we give an overview of the (temporal) logics
that may be relevant to express the properties. Section 1.3 ends the chapter by an
overview of several verification methods and tools, some of them being applied in
this work.

Contents
1.1 Formal Specifications of Systems . . . . . . . . . . . . . 4

1.1.1 Transition Systems . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Discrete Event Stochastic Processes . . . . . . . . . . . 6
1.1.3 Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.1.4 Hybrid systems . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Formal Specifications of Properties . . . . . . . . . . . . 18
1.2.1 Linear Temporal Logic . . . . . . . . . . . . . . . . . . . 18
1.2.2 Computational Tree Logic . . . . . . . . . . . . . . . . . 20
1.2.3 Hybrid Automata Stochastic Logic . . . . . . . . . . . . 22
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Formal model M
Kripke structure

Petri net
...

Logic formula φ
CTL
LTL
...

Model-checker
M |= φ?

Figure 1.1: Model-checking answers the question: doesM satisfies φ?

1.3 Verification Methods . . . . . . . . . . . . . . . . . . . . 27
1.3.1 Verifying Kripke Structures . . . . . . . . . . . . . . . . 27
1.3.2 Numerical model-checking . . . . . . . . . . . . . . . . . 29
1.3.3 Statistical model-checking . . . . . . . . . . . . . . . . . 31
1.3.4 Tools for statistical model-checking . . . . . . . . . . . . 34

1.1 Formal Specifications of Systems
The first step of the process shown in Figure 1.1 consists in specifying a formal
model of the system expressed with some formalism. So here, we present some of
them. Transition Systems which is the basic one is not used for design. However it
is provided as a semantic for more concise formalisms and for defining the truth
value of a formula. Still at the semantical level, Discrete Event Stochastic Processes
may be viewed as an extension of Transition Systems by integrating probabilities
and time. At a syntactical level, we introduce Petri Nets and their extensions
which are widely used for concurrent and distributed systems. Finally, we present
Hybrid Systems which allow to describe a continuous dynamics and thus to express
cyberphysical systems.

1.1.1 Transition Systems
As discussed above, transition systems is the standard low-level formalism. It
mainly consists of a set S of states (which may be uncountable) and a transition
relation →⊆ S × S describing state changes. We first present the particular case
of Kripke structures, which have a finite number of states equipped with labels
representing atomic properties that hold in the state.
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Definition 1 (Kripke structure)
Let AP be a set of atomic propositions.
A Kripke structure is a 4-uple K = (S, I, R,Σ, L) where:
• S is a finite set of states;
• I ⊆ S is the subset of initial states;
• R ⊆ S × S is a transition relation satisfying:

∀s ∈ S : ∃s′ ∈ S : (s, s′) ∈ R

• Σ = 2AP is the set of subsets of atomic propositions;
• L : S → Σ is a labelling function

Remark. The restriction on the transition relation means that for every state
there always exists a transition starting from that state. In fact this restriction can
be easily overcomed by adding a special idle state with a loop and such that for all
deadlock state (i.e. a state without outgoing transitions) one adds a transition to
the idle state. Moreover a special property, say deadlock, would only hold in the
idle state in order to reason about it in formulas.

Often, one also includes in the definition of a transition system a subset of
initial states S0 which is sometimes a singleton {s0} .

Example 1. A Kripke structure modeling a (very simple) coffee machine is
shown in Figure 1.2; the labels on arcs are only provided here for readability of
the example, but are not a part of the Kripke structure. The atomic property p
means that the machine is busy and the atomic property c means that the coffee
is filling the cup. If there is no fairness condition, this machine may prepare coffee
indefinitely.

∅

s0

{p}

s1

{p, c}

s2insert coin choose

cancel

give back change

make coffee

Figure 1.2: An example of Kripke structure : a coffee machine

Definition 2. An execution or run of a Kripke structure K is an infinite sequence
of states σ = s0, . . . , sn, . . . such that, for every i ∈ N : (si, si+1) ∈ R. This run
generates an (infinite) word w = L(s0) · · ·L(sn) · · · ∈ Σω, called the trace of σ.
The language of K, denoted by L(K), is the set of words generated by runs of K.
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Remark. When S0 is specified one restricts the runs to those starting in S0.

Example 2.

∅ ∅ ∅ {p, q}

Figure 1.3: Another example of a Kripke structure

The word (∅∅∅{p, q})ω is generated by the Kripke structure shown in Figure 1.3.

1.1.2 Discrete Event Stochastic Processes
We extend transitions systems by adding probabilities and time to the formalism.

Notation 3. We denote by P (e) the probability of an event e, and by P (e|e′)
the conditional probability of e given e′ has happened. We denote by E(X) the
expectation of the (numerical) random variable X. Given a set of basic events E
equipped with a σ-algebra, we denote by dist(E) the set of distributions over E.

Remark. Observe that the word event is overloaded. Within a σ-algebra it denotes
a measurable subset while in a transition system it denotes what triggers the state
change. In the sequel, the context should clarify which notion is used.

Behaviors for stochastic discrete event systems can be modeled via two families
of random variables:

• (Sn)n∈N taking values in the system state space. The random variable S0
represents the initial state of the system, and Sn the state after the nth event.

• (Tn)n∈N taking values in R+. The random variable T0 corresponds to the time
elapsed before the first event, and Tn to the time between the nth and the (n+1)th

event. Note that there may be zero delay between two events, like in the case of
a sequence of instantaneous instructions.

Note that this definition implies that events are instantaneous, and that there
might be a null delay between two events.
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Example 3.

state

time

q3

q4

q6

q7

q12

τ τ0 τ0 + τ1

Figure 1.4: A realization of a discrete event stochastic process

The figure above illustrates a discrete event system where the first realizations of
its random variables are defined as follows:

• S0 = q4, S1 = q4, S2 = q6, S3 = q3, S4 = q12 et S5 = q7;
• and T0 = τ0, T1 = τ1, T2 = T3 = 0.

According to physical constraints, the only restriction for these families of
random variables is to forbid Zeno phenomenon, where an infinite number of
actions can occur in a finite duration. This is mathematically equivalent that
almost surely ∑∞n=0 Tn = +∞.

Example 4. In this section, we use the Tandem Queue Network (TQN) illustrated
in Figure 1.5 as a running example. This system consists of two queues: the event
in represents the arrival of a client in the first queue; move indicates the move of
a client from the first to the second queue; finally, out represents a client leaving
the system. While the first event could happen at any moment, the other events
require the presence of at least one client in their corresponding queue.

n1 n2
in move out

Figure 1.5: Tandem Queue

Since we have not yet specified its probabilistic behavior, this high level model
leads to the transition system shown in Figure 1.6 which a countable number of
states, each state being specified by the numbers of clients in the two queues.
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0,0 0,1 0,3 0,3 . . .

1,0 1,1 1,2 1,3 . . .

2,0 2,1 2,2 2,3 . . .

3,0 3,1 3,2 3,3 . . .

... ... ... ...

in

in

in

in

in

in

in

in

in

in

in

in

in

in

in

in

move move move move

move move move move

move move move move

move move move

out out out out

out out out out

out out out out

out out out out

Figure 1.6: Tandem queue, seen as a transition system

For modeling purposes, it is useful to have a syntactical formalism for which the
semantics are described by the two random variable families (Sn)n∈N and (Tn)n∈N
previously defined.
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Definition 4 (Discrete Event Stochastic Process)
A Discrete Event Stochastic Process (DESP) is a tuple
D = (S, π0, E, Ind, enabled, delay, choice, target) where:

• S is a (possibly infinite) set of states;
• π0 ∈ dist(S) is the initial distribution over states;
• E is a finite set of events;
• Ind is a set of state indicators, i.e. functions S → R that may be constants;
• enabled : S → P(E) indicates the set of enabled events for each state,

satisfying: for all s ∈ S, enabled(s) 6= ∅;
• delay : S×E → dist(R+) is a mapping defined for pairs (s, e) such that s ∈ S

and e ∈ enabled(s);
• choice : S ×P(E)×R+ → dist(E) is a mapping defined for triples (s, E ′, d)

such that E ′ ⊆ enabled(s) and the possible outcomes of the distribution are
restricted to e ∈ E ′;

• target : S ×E ×R+ → S is a mapping indicating the state changes triggered
by events, defined for triples (s, e, d) with e ∈ enabled(s).

The set enabled(s) is the set of events enabled from state s. The delay function,
when applied to a pair (s, e) gives the distribution of the delay between the activation
of e in state s and its possible occurrence. The function choice gives an additional
probabilistic distribution in the case of several events having the same due date,
to randomly solve conflicts. The function target denotes the (random) destination
state given the source state, the occurrence of an event and the sojourn time in the
source state. The set of functions Ind are related to the observed behavior of the
model and will be used for specifying formulas.
Example 5. In the case of the tandem queues (see Figure 1.5), the set of states
is N×N, π0 = Dirac ((0, 0)) meaning that the initial distribution is concentrated
on state (0, 0), E = {in,move, out}. As discussed above,

enabled(s) =


{in} when s = (0, 0),
{in, out} when ∃n ∈ N+ such that s = (0, n),
{in,move} when ∃n ∈ N+ such that s = (n, 0),
{in,move, out} otherwise.

Let event in follow an exponential law of parameter λ denoted by exp(λ) with
density x 7→ λe−λx and events move and out follow exponential laws of respective
parameters µ0 and µ1, we have, for s ∈ S and e ∈ enabled(S):

delay(s, e) =


exp(λ) if e = in,
exp(µ0) if e = move,
exp(µ1) if e = out.
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The function choice is irrelevant as we use continuous laws: the simultane-
ous occurrence of two events has null probability. We might for example use
choice(s, E ′, t) = U(E ′) (a uniform distribution). Finally, as can be seen in Fig-
ure 1.6, target((n,m), e, d) is defined as follows for enabled(s):

target((n,m), e, d) =


(n+ 1,m) if e = in,
(n− 1,m+ 1) if e = move,
(n,m− 1) if e = out.

Observe that here the target function does not depend on the sojourn time.

Definition 5. A configuration of a DESP is a triple (s, τ, sched) where s is the
current state, τ ∈ R+ the current time and sched : E → R+ ∪ {∞} the function
describing the times at which each enabled event will occur (+∞ if the event cannot
be activated).

Informal semantics of a DESP. Starting from a given configuration (s, τ, sched)
of a DESP, its dynamics corresponds to an infinite loop, where each iteration con-
sists of the following steps:

1. Using sched, one get the set E ′ = {e ∈ enabled(s) | ∀e′ ∈ enabled(s) :
sched(e) ≤ sched(e′)} the set of enabled events with minimum delay. The
corresponding delay d is then sched(e)−τ for all e ∈ E ′. If E ′ contains several
elements, we then use a random variable of distribution choice(s, E ′, d). The
corresponding sampling provides an event e, which will be activated.

2. The next state s′ is then defined by s′ = target(s, e, d) and sched is updated:
for all event e′ 6= e still enabled, the value of sched(e′) is kept. For any other
event e′ that is enabled in s′, we sample a new delay d′ using delay(s′, e′) and
then sched(e′) = τ + d+ d′. For all disabled event e′ in s′, sched(e′) = +∞.

The initial configuration is obtained by sampling s using the distribution π0, τ
is the initial time (τ = 0) and sched is obtained by sampling every event delay of
enabled(s).

A particular case of DESP corresponds to the classical formalism of Discrete
Time Markov Chain (DTMC).

Definition 6. A square matrix P ∈ RS×S is stochastic (or a transition matrix)
if all its coefficients are non-negative and the sum of coefficients over each line is
equal to 1, i.e.:

∀i, j ∈ S,P(i, j) ≥ 0 and
∑
j∈S

P(i, j) = 1

Definition 7 (Discrete-Time Markov Chain)
A sequence (Xk)k≥0 of random variables with values in S is a Markov chain of
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transition matrix P and initial law π0 if:
• P (X0 = i) = π0[i] for every i ∈ S;
• for all k ∈ N and i ∈ S:

P (Xk+1 = i | Xk = ik, . . . X0 = i0) = P (Xk+1 = i | Xk = ik) = P(in, i).

When the initial distribution is a Dirac distribution, the initial state is usually
denoted s0. The sequence (Xk)k∈N is a stochastic process. This definition highlights
the characteristic property of Markov chains: the future evolution of the process is
independent from its past evolution; it only depends on its current state.
Definition 8 (Graph of a DTMC)

A DTMC is represented by a weighted directed graph:
• The set of vertices is S.
• Ther is an edge i→ j with weight P(i, j) if P(i, j) > 0 .

In addition to the interest of a graphical representation (see Figure 1.7) which
may be more readable for small DTMC, the analysis of such graphs leads to
characterizations of properties of the states like transience, recurrence, periodicity,
etc.

1 2

3

0.70.3
1

0.80.2

Figure 1.7: The graph of a finite DTMC

Implicitly in DTMC, an event occurs every time unit which implies that w.r.t.
time elapsing DTMC are not memoryless. A contrario Continuous Time Markow
Chains (CTMC) are “fully” memoryless since the time between two events follows
an exponential distribution whose rate only depends on the current state.
Definition 9 (Continuous Time Markov Chain)

Two sequences (Xk)k≥0 and (Tk)k≥0 represent a CTMC of transition matrix P,
initial distribution π0 and rate {λi}i∈S if:
• The sequence (Xk)k∈N is a DTMC with transition matrix P and initial

distribution π0;
• for all k ∈ N and τ ∈ R+:

P (Tk ≤ τ |Xk = ik, . . . , X0 = i0, T0 ≤ τ0 . . . Tk−1 ≤ τk−1)
= P (Tk ≤ τ |Xk = ik) = 1− e−λik

τ
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The DTMC associated with the CTMC is called the embedded DTMC. The
graph of a CTMC is the one of embedded DTMC where the states have for labels
their rate (see Figure 1.8).

4

1

7

2

5
3

0.70.3 1

0.80.2

Figure 1.8: The graph of a finite CTMC

1.1.3 Petri Nets
Carl Adam Petri, a German mathematician, has defined during his PhD [57] a
formalism for describing relations between conditions and events, thus modeling
the behavior of distributed discrete event systems. In this section, we give a
short presentation of this model, which is now called Petri net, and of some of its
extensions.
Definition 10 (Petri net)

A Petri net is a 5-tuple N = (P, T,W−,W+,m0) where P ∩ T = ∅ such that:
• P is a non-empty finite set of places;
• T is a non-empty finite set of transitions;
• W− : P × T → N is the forward incidence function;
• W+ : P × T → N is the backward incidence function;
• m0 ∈ NP is the initial marking of the net.

A Petri net is represented by a bipartite graph where:
• vertices are places depicted as circles and transitions depicted as rectangles;
• there is an edge from place t to transition t labelled by W−[p, t] if W−[p, t] > 0;
• there is an edge from transition t to place p labelled by W+[p, t] if W+[p, t] > 0;
• Inside place p, one writes either the number m0(p) of tokens or represent this

number (when enough small) by bullets.
When the label of an edge is missing, it means that this label is 1.
Example 6.

in p1 move p2 out
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Figure 1.9: A Petri net

The net shown in Figure 1.9 models the tandem queue where the marking of p1
(respectively p2) indicates the number of clients in the first (respectively second)
queue of the tandem.

A marking of a Petri net N is a mapping m ∈ NP that associates an integer
with each place of the net.

A transition t ∈ T is firable in a marking m if ∀p ∈ P : m(p) ≥ W−(p, t).
The firing of such a transition from m leads to a new marking m′ defined by:
∀p ∈ P : m′(p) = m(p)−W−(p, t) +W+(p, t). This firing is denoted by m t→ m′.

Let σ = t1 . . . tn ∈ T ∗ be a sequence of transitions. Then σ is firable and and
leads to marking m′ (written m

σ→ m′) if there exists a sequence of markings
m0 . . .mn such that m = m0 and m′ = mn and ∀0 ≤ k < n,mk

tk+1→ mk+1.
We denote by Reach(N ,m0) = {m|∃σ ∈ T ∗ : m0

σ→ m} the set of reachable
markings.

Example 7. In Figure 1.9, the initial marking is m0 = (0, 2) and a possible
sequence of transitions would be:

(0, 2) in−→ (1, 2) out−−→ (1, 1) move−−−→ (0, 2)

Transitions in and out are firable from initial marking m0 while move is not.

It is possible to add (quantitative) time in Petri nets, with two main approaches:
• either Time Petri nets [23] in which transitions are equipped with intervals

constraining their firing;
• or Timed Petri nets [1] where clocks are added to tokens, and edges are equipped

with guards.
The first approach can be extended to obtain stochastic Petri nets, by defining a

probabilistic distribution over the time interval of the transition delay. In addition,
one has to solve conflicts between simultaneous occurrences of transitions and this
is done with the help of priorities and weights.
Definition 11 (Stochastic Petri net)

A stochastic Petri net is a 8-tuple N = (P, T,W−,W+,m0,Λ,Π, w) where:
• (P, T,W−,W+,m0) is a Petri net;
• Λ : T → dist(R) is a function that associates a distribution with each

transition;
• w : T → R a function that associates a weight with each transition;
• Π : T → N a function that associates a priority with each transition.
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Remark. This definition could be extended by considering Λ as a mapping from
markings to rates.

Stochastic nets can be seen as a particular case of DESP with states NP , the
initial distribution over states π0 = Dirac(m0), no indicator, and:

• enabled(m) = {t ∈ T | ∀p ∈ P : W−(p, t) ≤ m(p)};
• delay(m, t) = Λ(t);
• choice(m,T ′, d) is a distribution defined by the following procedure: select the

subset Tmax = arg max{Π(t) | t ∈ T ′} and then sample some t in Tmax with
distribution w(t)∑

t′∈Tmax
w(t′) ;

• and target(m, t, d) = m′ with m′(p) = m(p)−W−(p, t) +W+(t, p) for all p in P .

We now present some high level Petri nets, in which tokens are labelled with
information and transition can be fired in multiple ways Let us first recall the a
natural extension of sets: multisets. A multiset may contain multiple occurrences
of the same element.

Definition 12. A multiset is a pair (S, µ) where S is a set and µ : S → N is a
mapping from the elements of the set to natural numbers.

Notation 13. We denote by Bag(S) set of multisets using the support set S. A
multiset µ is usually written as a symbolic sum ∑

s∈S µ(s) · s with term omitted
when µ(s) = 0 and factor omitted when µ(s) = 1.

Example 8. Using this notation, 2 · b+ c and 2 · a+ b+ 3 · c are multisets over
the set {a, b, c}.

Definition 14 (High-level Petri net)
A high-level Petri net is a 8-tuple N = (P, T,W−,W+,m0, C,Domain, G) with:
• P and T the respective non-empty sets of places and transitions, with P ∩T =
∅;

• C = {C1, . . . , Ck} a set of finite color classes;
• Domain : (P ∪ T ) → C∗ a function that associates with each place and

transition a sequence of color classes, representing a cartesian product Ci1 ×
· · · × Cil ;

• W− and W+ are respectively forward and backward incidence matrices. For
each p ∈ P and t ∈ T : W−(p, t) and W+(p, t) are mapping from Domain(t)
to Bag(Domain(p));

• G the guard is a mapping from T such that G(t) is a subset of Domain(t);
• m0 the initial marking with m0(p) ∈ Bag(Domain(p)).
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In order to define the incidence functions W− and W+, it is necessary to
introduce a typed variable per color class occurences of the cartesian product of
Domain(t). They are used to build expressions with values in Bag(Domain(P )),
For instance, with Domain(T ) = C1 × C1 × C2 and Domain(P ) = C1 × C2 such a
mapping could be:

C1 × C1 × C2 → Bag(C1 × C2)
< x1,1, x1,2, x2,1 > 7→ 2· < x1,1, x2,1 > + < x1,2, x2,1 >

whose type of variable xi,j is Ci.

Example 9.

a
b
c

Processes

1
2

Ressources
Get

<x>

<y>
<x,y>

a
c

Processes

P1

1

Ressources

P2

Get

(b,2)

P3

<x>

<y>
<x,y>

Figure 1.10: A simple high-level Petri net

A simple high-level Petri net is shown in Figure 1.10, with two color classes:
Ressources and Processes. The domain of place P3 is the cartesian product
Processes × Resources. Firing transition Get corresponds to a process acquiring a
resource (like a file). In the low part of the figure, a new marking is shown that is
obtained after firing Get with x bound to process b and y bound to resource 2.
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The incidence functions of this example are:

W−(Get, P1) = Processes× Ressources → Bag(Processes)
< x, y > 7→ < x >

W−(Get, P2) = Processes× Ressources → Bag(Processes)
< x, y > 7→ < y >

W+(Get, P3) = Processes× Ressources → Bag(Processes× Ressources)
< x, y > 7→ < x, y >

Stochastic Petri nets and high-level Petri nets can be combined to define
stochastic high-level Petri nets which is indeed the input formalism of the tool
Cosmos used in our case studies.

1.1.4 Hybrid systems
Hybrid systems [43] combine continuous dynamics, i.e. evolution of variables
according to flow functions (possibly described by differential equations) in control
locations, and discrete jumps between these locations, equipped with guards and
variable updates.
Example 10. A classical example is the thermostat depicted in Figure 1.11,
controlling a heater by turning it on or off to adjust the room temperature
represented by variable x, maintaining it between xmin and xmax. When the heater
is off, the temperature decreases according to differential equation ẋ = −Kx and
when the heater is on, it increases according to ẋ = K(xh − x), where xh and K
are parameters for the heater and the room.

ON
ẋ = K(xh − x)
x ≤ xmax

OFF
ẋ = −Kx
x ≥ xmin

x = xmax
stop

x = xmin
start

Figure 1.11: Room temperature controller

Formally, hybrid automata over R can be defined as follows:
Definition 15 (Hybrid automaton)

A hybrid automaton of dimension n is a tuple H = (S,Σ, E,Dyn, Inv,G,R),
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where:
• S is a finite set of states;
• Σ is a finite alphabet of events;
• E ⊆ S × Σ× S is a finite set of edges;
• Dyn is the dynamics assigning to each state a set of differential equations

over Rn;
• Inv assigns to each state a subset of Rn called invariant;
• G assigns to each edge a subset of Rn called guard;
• R assigns to each edge a subset of {1, . . . , n} called reset.

In the example above, n = 1, S = {OFF, ON}, Σ = {stop, start}, E =
{(OFF, start, ON), (ON, stop, OFF)}, Dyn(OFF) = {ẋ = −Kx}, Dyn(ON) = {ẋ =
K(xh − x)}, Inv(OFF) = {x ∈ R | x ≥ xmin}, Inv(ON) = {x ∈ R | x ≤ xmax},
G(OFF, start, ON) = {xmin}, G(ON, stop, OFF) = {xmax} and R(OFF) = R(ON) = ∅.
Definition 16

The semantics of hybrid automaton H is defined as the transition system
TH = (Q,→) where:

• the set of configurations is Q = S ×Rn;
• the transition relation contains two types of steps:

– discrete step: (s1, y1) → (s2, y2) iff there exists e = (s1, a, s2) in E with
y1 ∈ G(e) and y2[i] = 0 for i ∈ R(e) and y2[i] = y1[i] otherwise.

– continuous step: (s1, y1)→ (s2, y2) iff s1 = s2 and there exist t ≤ t′ and a
continuous function f : [t, t′]→ Rn solution of the differential equations in
Dyn(s1) such that y1 = f(t) and y2 = f(t′), with f(t′′) ∈ Inv(s1) for all
t′′ ∈ [t, t′].

For this expressive formalism, where the associated transition system has
an uncountable state space, most verification questions are undecidable and in
particular the reachability problem. Analysis results were obtained for subclasses,
usually by building a finite abstraction based on some bisimulation equivalence,
preserving a specific class of properties, like reachability or those expressed by
temporal logic formulas.

Observations. While this definition seems rather general, it suffers from some
limitations. For instance, the specification of the differential equations only depends
on the current state and not on the whole history. In Chapter 3, a more general
formalism based on Simulink will be detailled.

There are several ways to introduce probabilities in such systems: either by
associating weights with discrete transitions or associating random delays with
states. In Chapter 4, we propose another way to do so.
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1.2 Formal Specifications of Properties
Generally properties are specified using some logic. In the case of dynamical
systems temporal logics that express properties related to runs of sytems are the
most appropriate ones. Following our presentation of formalisms, we begin by
temporal logics for discrete event systems and then we introduce some of their
extensions introduced to capture features of stochastic and/or hybrid systems.

1.2.1 Linear Temporal Logic
The aim of temporal logics is to express properties over system executions. Two
approaches are possible: linear logics like LTL (Linear Temporal Logic) which
consider sequences independently from each other, and tree logics such as CTL
(Computation Tree Logic) which consider the execution tree and thus can be used
to reason over branchings.

We first focus on LTL, for which a formula is interpreted over a system execution
trace.

Definition 17 (Syntax of LTL). Given a set AP of atomic propositions, LTL
formulas are defined by the following grammar:

ϕ ::= a | ϕ1 ∨ ϕ2 | ¬ϕ | Xϕ | ϕ1 Uϕ2 , a ∈ AP

This logic is an extension of propositional logic; we first remark that by using
De Morgan rules, it is possible to redefine the ∧ operator. > (true) can be defined
as a ∨ ¬a and ⊥ (false) as a ∧ ¬a. The X and U modalities have the following
interpretations:

• Xϕ means that at the next moment, ϕ holds;
• ϕ1 Uϕ2 means that ϕ2 will be true at some point in the future, and ϕ1 holds

until then.
More formally:

Definition 18 (Semantics of LTL)
The satisfaction semantics of an LTL formula ϕ over an infinite word w =
w0 . . . wn . . . ∈ (2AP )ω and a position i of this word, denoted w, i |= ϕ, is
inductively defined by:

w, i |= a ∈ AP if a ∈ wi
w, i |= ϕ1 ∨ ϕ2 if (w, i |= ϕ1) or (w, i |= ϕ2)

w, i |= ¬ϕ if w, i 6|= ϕ
w, i |= Xϕ if w, i+ 1 |= ϕ

w, i |= ϕ1 Uϕ2 if ∃j ≥ i : (w, j |= ϕ2) ∧ (∀i ≤ k < j : w, k |= ϕ1)
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The classical operators ♦ and � are defined by:
• ♦ϕ ≡ >Uϕ: the formula ϕ will be satisfied eventually;
• �ϕ ≡ ¬♦¬ϕ: at every moment the formula is satisfied (there is no time in the

future where ϕ is not satisfied)
Moreover, for an LTL formula ϕ and a word w, we say that w satisfies ϕ if w, 0 |= ϕ,
written w |= ϕ. We denote by Lϕ the set of words w satisfying ϕ.
Definition 19. Let K be a Kripke structure, and ϕ an LTL formula. We say that
K |= ϕ if, and only if, for any execution σ of K, the trace w of σ satisfies ϕ.
Remark. Said otherwise, K |= ϕ if and only if L(K) ⊆ Lϕ.

Similarly to regular languages (and finite automata), it is possible to characterise
the language Lϕ with a class of automata called Büchi automata.
Definition 20 (Büchi Automaton)

A Büchi automaton is a 6-uple B = (S, T, I, F,Σ, L) with:
• S a set of states, and T ⊆ S × S a set of transitions;
• I ⊆ S the set of initial states, F ⊆ S the set of recurring states;
• Σ an alphabet and L : S → Σ a labelling function.

Definition 21. An execution σ of a Büchi automaton is an infinite sequence of
states s0, . . . , sn, . . . such that, for each i ∈ N : (si, si+1) ∈ T . The trace of σ is the
word w = L(s0)...L(sn).... An execution is accepting if the set {i ∈ N | si ∈ F} is
infinite (it goes infinitely often in a recurring state). A word w is recognized by B
if there exists an accepting execution σ with trace w. We denote by L(B) the set of
words recognized by B.

A usual question on languages and automaton is the emptiness problem.
Proposition 1. Let B be a Büchi automaton. It is possible to check in linear time
if the language recognized by B is empty. Furthermore, the emptiness problem is
NLOGSPACE-complete.

There exist several algorithms answering this question; a comparison between
some of them has been published by Andreas Gaiser and Stefan Schwoon [41].

Let AP be a set of atomic propositions. We extend Definition 20 with a labelling
function using the alphabet P(P(AP )), but where words are still considered using
P(AP ).
Definition 22 (Extension of definition 21). Let Σ = P(AP ) and let B be a Büchi
automaton over alphabet P(Σ). Let w ∈ Σω and let σ be an accepting execution of
B. Then w is recognized by σ if and only if: ∀i ∈ N : wi ∈ L(si).

Using this extension, we can now state the following theorem, with Lϕ the set
of words w satisfying ϕ recognized by a Büchi automaton:
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Theorem 2
Let ϕ be an LTL formula, over a set of atomic propositions AP . Then, we can
build in exponential time a Büchi automaton Bϕ over the alphabet 22AP which
exactly recognises the set of words satisfying ϕ: L(Bϕ) = Lϕ.

Several algorithms perform the construction from ϕ to Bϕ, notably Paul Gastin
and Denis Oddoux’s one [42].
Remark. In order to shorten state labelling notations and allow for the use of the
transformation of [42], we use boolean formulas over AP : we recursively define a
valuation function Val : Bool(AP )→ 2Σ = 22AP as follows:

Val(>) = 2AP
Val(p) = Σp = {A ∈ 2AP | p ∈ A}

Val(ϕ ∧ φ) = Val(ϕ) ∩ Val(φ)
Val(ϕ ∨ φ) = Val(ϕ) ∪ Val(φ)

Val(¬ϕ) = Σ \ Val(ϕ)

For instance, with AP = {p, q, r}, we have Val(p∧¬r) = {{p}, {p, q}}. We use
this notation to define sets of P(AP ).

Example 11. Let p and q be atomic propositions. The Büchi automaton shown
in Figure 1.12(a) recognizes �♦ p (at each time, there exists a time in the future
where p is satisfied), and the Büchi automaton shown in Figure 1.12(b) recognizes
pU q.

1.2.2 Computational Tree Logic
We now focus on CTL which considers the system execution tree, and is used to
reason over branchings.
Definition 23 (Syntax of CTL). Given a set AP of atomic propositions, CTL
formulas are defined by the following grammar:

ϕ ::= a | ϕ1 ∨ ϕ2 | ¬ϕ | E Xϕ | A Xϕ | Eϕ1 Uϕ2 | Aϕ1 Uϕ2 , a ∈ AP

p ¬p

(a)

p q >

(b)

Figure 1.12: Two examples of Büchi automata
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In this case, the temporal operators X and U are in the scope of a path quantifier,
E being interpreted as for some path while A means for all paths.

A CTL formula is interpreted over a state of the execution tree of a Kripke
structure K = (S, I, R,Σ, L). We write Exec(s) for the execution tree starting from
state s ∈ S, and σ = s0s1 . . . with s0 = s for a path in this tree, with σ(i) = si for
the state at position i.

Example 12.

s0

s1

s0 s2

s1 s0 s2

...

Figure 1.13: The beginning of an execution tree

Figure 1.13 shows the beginning part of the execution tree for the Kripke structure
of Figure 1.2. The nodes are labelled by the corresponding states of the Kripke
structure.

Definition 24 (Semantics of CTL)
The satisfaction of a CTL formula over a state is inductively defined by:

s |= a ∈ AP if a ∈ L(s)
s |= ϕ1 ∨ ϕ2 if (s |= ϕ1) or (s |= ϕ2)

s |= ¬ϕ if s 6|= ϕ
s |= E Xϕ if ∃σ ∈ Exec(s) : σ(1) |= ϕ
s |= A Xϕ if ∀σ ∈ Exec(s) : σ(1) |= ϕ

s |= Eϕ1 Uϕ2 if ∃σ ∈ Exec(s),∃j ≥ 0 :
(σ(j) |= ϕ2) ∧ (∀0 ≤ k < j : σ(k) |= ϕ1)

s |= Aϕ1 Uϕ2 if ∀σ ∈ Exec(s),∃j ≥ 0 :
(σ(j) |= ϕ2) ∧ (∀0 ≤ k < j : σ(k) |= ϕ1)

Like for LTL, the standard operators ♦ and � are defined by:
• E♦ϕ ≡ E>Uϕ. A state s statisfies this formula if there exists a path starting

from s where ϕ will be satisfied eventually ;
• A�ϕ ≡ ¬E♦¬ϕ. A state s statisfies this formula if ϕ always holds on all states
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of all paths starting from s ;
• A♦ϕ ≡ A>Uϕ. A state s statisfies this formula if ϕ holds eventually on all

paths starting from s.
The Kripke structure K satisfies a CTL formula ϕ, written K |= ϕ if its initial

state satisfies ϕ, i.e. s0 |= ϕ.

Example 13.

∅

s0

{p}

s1

{p, c}

s2insert coin choose

cancel

give back change

make coffee

Figure 1.2: An example of Kripke structure : a coffee machine

We continue the example on the Kripke structure K shown in Figure 1.2. We have:
• K 6|= A♦ c: there exists a loop between states s0 and s1, which avoids the only

state where c is satisfied, s2;
• K |= A X E X c: the single successor of s0 is s1 which has for possible successor
s2 satisfying c;

• K 6|= E X A X c: state s1 has also for possible successor s0 not satisfying c.

1.2.3 Hybrid Automata Stochastic Logic
Logics LTL and CTL are appropriate for discrete event systems but cannot express
usual quantitative timed requirements like a bounded response time for requests.
In addition, they cannot express any satisfaction probability which is mandatory
for risk evaluation. So we now present stochastic extensions to LTL and CTL that
have mainly be introduced for numerical model checking (following the analyses of
[12]) and we end this section by the HASL logic suited for statistical model checking
of probabilistic hybrid systems and integrated in the tool Cosmos.

Continuous Stochastic Logic. In [7], Continuous Stochastic Logic (CSL) has
been introduced and the decidability of the verification problem over a finite
continuous-time Markov chain (CTMC) has been established. CSL extends the
branching time reasoning of CTL to CTMC models by replacing the discrete CTL
path-quantifiers All and Exists with a continuous path-quantifier that expresses
that the probability of CTMC paths satisfying a given condition fulfils a given
bound.

Several variants have been introduced and studied such as CSRL [10], that
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extends CSL to take into account Markov reward models, i.e. CTMCs with a single
reward on states or possibly on actions [53], that is used to specify an interval (on
the accumulated reward) on the Until or Next operator. asCSL, introduced in [9]
replaces the interval time constrained Until of CSL by a regular expression with a
time interval constraint. These path formulas can express elaborated functional
requirements as in CTL∗ but the timing requirements are still limited to a single
interval globally constraining the path execution. In the logic CSLTA [35], path
formulas are defined by a single-clock deterministic timed automaton. This logic
has been shown strictly more expressive than CSL and also more expressive than
asCSL when restricted to path formulas.

DTA. In [27], deterministic timed automata with multiple clocks are considered
and the probability for random paths of a CTMC to satisfy a formula is shown
to be the least solution of a system of integral equations. The cost of this more
expressive model is both a jump in the complexity as it requires to solve a system
of partial differential equations, and a loss in guaranty on the error bound.

M(I)TL. Several logics based on linear temporal logic (LTL) have been intro-
duced to consider timed properties, including Metric (Interval) Temporal logic
in which the Until operator is equipped with a time interval. Chen et al. [28]
have designed procedures to approximately compute desired probabilities for time
bounded verification, but with complexity issues. The question of stochastic model
checking on (a sublogic of) M(I)TL properties, has also been tackled see e.g. [76].

Observe that all of the above mentioned logics have been designed so that
numerical methods can be employed to decide about the probability measure of
a formula. This very constraint is at the basis of their limited expressive scope
which has two aspects: first the targeted stochastic models are necessarily CTMCs;
second the expressiveness of formulas is constrained by decidability/complexity
issues. Furthermore the evolution of stochastic logics based on CTL seems to
have followed two directions: one targeting temporal reasoning capability (in
that respect the evolutionary pattern is: CSL → asCSL → CSLTA → DTA),
the other targeting performance evaluation capability (evolutionary path: CSL
→ CSRL → CSRL+impulse rewards). A unifying approach is currently not
available, thus, for example, one can calculate the probability for a CTMC to
satisfy a sophisticated temporal condition expressed with a DTA, but cannot, assess
performance evaluation queries at the same time (i.e. with the same formalism).

Hybrid Automata Stochastic Logic. The logic HASL (Hybrid Automata
Stochastic Logic) describes properties via two elements:
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• a Linear Hybrid Automaton (LHA) which contains numerical variables and is
synchronised with the observations of the analyzed stochastic process;

• and an expression specifying the quantity to be evaluated.
Example 14.

`0
ẋ1:1
ẋ2:0

Size<10

`1
ẋ1:1
ẋ2:1

Size≥10

`2

E; x1≤100 E; x1≤100
E; x1≤100

E; x1≤100
];
x1 =100;

r:= x2100 ]; x1=
100
; r:=

x 2
100

E(LAST(r))

Figure 1.14: An example of Hybrid Automata Stochastic Logic (HASL) formula

A HASL formula is described on Figure 1.14 over the tandem queue system,
represented by the DESP shown in Figure 1.6, equipped with the indicator Size :
(n,m)→ n+m. This formula contains an automaton with three states (`0, `1, `2)
and an expression E(LAST (r)) which describes the proportion of time during
which too many people are in the queues (over 10 simultaneous clients), using a
overall duration of 100 time units.
This automaton handles three variables:
• x1 representing the elapsed time;
• x2 representing the time during which the queues were too full;
• and r representing the time proportion over which the queues were too full.
The initial state `0 corresponds to the system running without overfilling. In this
state, only x1 evolves over time. In state `1, the variable x2 also evolves, measuring
the time during which the queues are overfilled. The measure ends in state `2,
with the maximum simulation time.
There are two types of transitions: those who are fired by a process event, shown
in blue, and the autonomous transitions fired by a condition over variables (in this
case, the execution time) represented in red.
In the expression E(LAST (r)), the operator LAST is used to evaluate r at the
end of an execution, and E the expectation (over successful runs).

We now describe more formally the syntax and semantics of HASL. In the LHA,
the transitions are equipped by constraints that form guards, and variable updates.
Definition 25. A constraint is a boolean combination of comparisons of the form∑

1≤i≤n αixi + c ./ 0 where xi are variables, αi, c are indicators and ./ ∈ {=, <,>
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,≤,≥}. We denote by Const the set of constraints.

Definition 26. An update is a tuple of functions u1, . . . , un such that every uk is
of the form uk = ∑

1≤i≤n αixi + c where αi and c are indicators. We denote by Up
the set of updates.

In order to synchronize with the model of the system, we define Linear Hybrid
Automata:
Definition 27

A Linear Hybrid Automaton (LHA) is a tuple A = (E,L,Λ, Init,Final, X, flow,
→) where:

• E is a finite alphabet of events;
• L is a finite set of locations;
• Λ : L→ Prop is a location labelling function;
• Init is a subset of L containing the initial locations;
• Final is a subset of L containing the final locations;
• X = (x1, . . . , xn) is a n-uple of data variables;
• flow : L→ Indn is a function which associates with each location one indicator

per data variable representing the evolution rate of the variable in this location.
The projection of flow on its ith component is denoted by flowi;

• the transition relation→ is a subset of L×
(
(2E × Const) ] ({#} × Const)

)
×

Up× L, where ] denotes the disjoint union. A transition (`, E ′, γ, U, `′) ∈→
is written ` E′,γ,U−−−−→ `′.
Furthermore, the following conditions are required:

• Initial determinism : ∀`1 6= `2 ∈ Init,Λ(`1) ∧ Λ(`2)⇔ ⊥;
• Determinism on events : ∀E1, E2 ⊆ E st E1 ∩E2 6= ∅ : ∀`, `1, `2, si `

E1,γ1,U1−−−−−→
`1 et ` E2,γ2,U2)−−−−−→ `2 are two distinct transitions, then either Λ(`1)∧Λ(`2)⇔ ⊥
or γ1 ∧ γ2 ⇔ ⊥;

• Determinism on # : ∀`, `1, `2 ∈ L si ` #,γ1,U1−−−−→ `1 et ` #,γ2,U2−−−−→ `2 are two
distinct transitions, then either Λ(`1) ∧ Λ(`2)⇔ ⊥ or γ1 ∧ γ2 ⇔ ⊥;

• No #-labelled loops: for any sequence `0
E0,γ0,U0−−−−−→ `1

E1,γ1,U1−−−−−→ . . .
En−1,γn−1,Un−1−−−−−−−−−→

`n such that `0 = `n, ithere exists i ≤ n such that Ei 6= #.

There are two kinds of transitions in this definition:
• transitions with label #, which are spontaneously fired with respect to the

automaton’s variable values;
• transitions with a label containing a subset of events, which are fired upon

synchronisation with the model to evaluated: the occurence of a transition of
the model “sends” the corresponding event to the automaton.
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A configuration of the hybrid automaton consists of a state and a valuation of
its variables.

The synchronised product of the stochastic process of the model and the hybrid
automaton is also a stochastic process. The state of the synchronised product is
a pair, composed of a configuration of the net and a configuration of the hybrid
automaton.

A change of state in this synchronised product is produced either by the firing
of a transition of the model (synchronised with an edge of the automaton), or
by the firing of an autonomous transition from the current automaton state. As
previously, the event to be considered is the earliest one. If a transition firing
occurs in the model and cannot be synchronised with the automaton, the process
ends in a failure state. The only other way to end this new process is to reach a
final state of the automaton.
Example 15. In the example of figure 1.14, the set of events E is {in,move, out}.
The two autonomous transitions are used to stop the synchronisation after 100
time units by reaching the final state `2, whatever the previous state. Conditions
on state `0 and `1 distinguish the state in which tandem queues are in: either they
are overfull (Size ≥ 10) or there is a normal load.
Since ẋ1 = 1 during the whole run of the automaton, variable x1 measures the
elapsed time (and therefore stops the execution when needed). The variable x2 is
only modified in state `2, to measure the duration of overfull load in the tandem
queues.

We now focus on the evaluation of a performance index over a trajectory of the
synchronised product between the LHA and the model. This index is obtained via
expressions over state variables:
Definition 28

HASL expressions are defined by the following grammar:

Z ::= c | E(Y ) | Z + Z | Z − Z | Z × Z | Z/Z
Y ::= c | Y + Y | Y × Y | Y/Y | LAST(y) | MIN(y) | MAX(y) | INT(y) | AVG(y)
y ::= c | x | y + y | y × y | y/y

where x is a state variable (in the set X) of the automaton, and c a constant.

In this definition (from bottom to top):
• the y expressions are arithmetic expressions over state variables and constants;
• path operators are then applied on the previous expressions: minimum, maximum,

integral with respect to time, last value. New arithmetic expressions are then
built from these values. The result is a random variable Y associated with the
random trajectory of the synchronised product.
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• The expectation of these random variables form performance indices that we can
then combine with arithmetic operations to define new indices.

These expectations are actually conditional ones since the trajectories have to be
accepted. A variant for these expressions is to consider directly as a performance
index, the probability that the trajectory is accepted.
Example 16. To continue again the example of figure 1.14, by construction
trajectories always end in the final state `2 (after 100 time units), where we consider
the last value of r = x2

100 , which is set by the transitions leading to `2. The HASL
expression associated with this LHA is used to measure the fraction of time in
which the queue was overloaded, for simulations of 100 time units.

Compared to the logics introduce above, HASL is the most expressive one thanks
to (1) the selection of trajectories, (2) the existence of multiple indicators, and (3)
the arithmetic operators.

1.3 Verification Methods

1.3.1 Verifying Kripke Structures
To check whether a Kripke structure K satisfies an LTL formula ϕ, a classical
method consists in trying to exhibit a counter-example: more precisely, a particular
execution σ, whose trace w satisfies ¬ϕ. We have seen in section 1.2.1 that a Büchi
automaton can be used to generate the whole set of words (or executions) satisfying
a LTL formula. Using this result, one only checks the emptiness of the synchronous
product of B¬ϕ with the Kripke structure K to prove that there is no such counter
example.

The synchronised product of a Kripke structure K and the Büchi automaton
B¬ϕ is also a Kripke structure:
Definition 29 (Kripke structure and Büchi automaton product)

Let AP be a set of atomic propositions. Let K = (SK, IK, RK, LK) be a
Kripke structure (which states are labelled by elements of P(AP )), and B =
(SB, TB, IB, FB,P(P(AP )), LB) a Büchi automaton over the alphabet P(P(AP )).
We define the product Büchi automaton P(S, T, I, F,Σ, L) as follows:
• its set of states is

S = {(s, s′) ∈ SK × SB | LK(s) ∈ LB(s′)}

The states (s, s′) ∈ S are labelled by L(s, s′) = LK(s).
• its initial states are I = (IK × IB) ∩ S, and the recurring states are F =

(SK × FB) ∩ S;
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• its alphabet Σ is P(AP );
• its set of transitions is defined using:

((s1, s
′
1), (s2, s

′
2)) ∈ T ⇐⇒ (s1, s2) ∈ RK ∧ (s′1, s′2) ∈ TB

We denote this product by P = K ⊗ B.

Proposition 3. A word is recognized by the Büchi automaton K ⊗ B if and only
if it is recognized by both the Kripke structure K and the Büchi automaton B, id
est: L(K ⊗ B) = L(K) ∩ L(B).

Proof : Let Σ = P(AP ) and w be a word recognized by the product Büchi automaton.
There exists an accepting execution σ = (s0, s

′
0) . . . (sn, s′n) . . . which recognizes w.

We have, for every i ∈ N : ((si, s′i), (si+1, s
′
i+1)) ∈ T and w = L(si, s′i) = LK(si).

Furthermore, using the definition of S, we have w ∈ LB(si).
• Using the definition of T , we have for every i ∈ N : (si, si+1) ∈ RK and by

construction of S, s0, . . . , sn, . . . is an infinite sequence of states of the Kripke
structure K, which means K recognizes w.

• Similary, for every i ∈ N: (s′i, s′i+1) ∈ TB and s′0, . . . s′n . . . is an infinite sequence
of states of the Büchi automaton. As σ is an accepting execution in the
product automaton, the set {i ∈ N | (si, s′i) ∈ F} is infinite. Moreover, as
F = (S1 × FB) we have for all t ∈ S1 : (t, s′i) ∈ F ⇔ s′i ∈ FB. We can
deduce that {i ∈ N | s′i ∈ FB is also infinite. Finally, using the definition
of S, w = LK(si) ∈ LB(s′i) which means that w is recognized by the Büchi
automaton B

We can show similarly that if the word w is recognized by both automata, then it
is recognized by the product automaton.

Proposition 4
Let K be a Kripke structure, and ϕ a LTL formula. Then the problem: «K |= ϕ?»
is decidable, with temporal complexity |K| × 2|ϕ| and belongs to PSPACE.

Proof : This proposition has been proved by Moshe Y. Vardi and Pierre Wolper in
1986 [72].

Example 17. We want to check if ϕ = �(p⇒ X♦ q) holds on the Kripke structure
shown in Figure 1.3. We first compute ¬ϕ ≡ ¬�(p⇒ X♦ q) ≡ ♦(¬(p⇒ X♦ q)) ≡
♦(p ∧ X(¬♦ q)) ≡ ♦(p ∧ X(�(¬q))). Then we build a Büchi automaton that
recognizes ¬ϕ and afterwards the product automaton. This operation is described
in Figure 1.15.
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¬p,¬q ¬p,¬q ¬p,¬q p, q

>

p

¬q

¬p,¬q ¬p,¬q ¬p,¬q p, q

p, q

¬p,¬q ¬p,¬q ¬p,¬q

Figure 1.15: Product of the Kripke structure and the Büchi automaton

It is enough to read the product automaton: as it contains an accepting loop of
recurring states reachable from the initial state, the formula ϕ is not satisfied over
the Kripke structure. Even better, we immediately obtain on the Kripke structure
a counter-example: reaching the p, q state and then looping over the three first
states of the Kripke structure.

1.3.2 Numerical model-checking
Numerical model-checking of stochastic models has been intensively studied. Here
we only give some relevant examples of these techniques and then discuss the
limitations of numerical model checking. Let us start with time-bounded reachability
for DTMC which requires to reach a subset of states S+ in at most u steps. Such a
property can inductively defined w.r.t. u as follows.
Definition 30 (Time-Bounded Reachability for DTMC)

Given a DTMC C = (S, S0,P), a set of states S+ ⊂ S and a positive integer u,
we define the vector of probabilities µu ∈ [0, 1]S as:

µu(s) =


1 if s ∈ S+
0 if u = 0 ∧ s 6∈ S+∑
s′∈S

P(s, s′)µu−1(s′) if u > 0 ∧ s 6∈ S+

We now switch to CTMCs, and define µτ as the vector of probabilities to reach
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an absorbing state s+ in τ time units by µτ (s) = πτ,s(s+). Using the uniformization
method [50], one assumes w.l.o.g. that the exit rate is independent from the state
and equal to some λ. Thus by conditionning on the number of steps during an
interval [0, τ ], the time-bounded reachability may be defined as follows.

Definition 31 (Time-Bounded Reachability for CTMC)
Given a CTMC C, a state s+ ∈ S and a positive real τ , we define the vector of
probabilities µτ ∈ [0, 1]S by:

µτ (s) = e−λτ
∑
n∈N

(λτ)n
n! µn(s)

In order to generalize it to a CTL-type formulas, one considers the formula as a
tree, and evaluates those starting from the leaves. Given a sub-formula consisting
of only one probabilistic operator at the root, and no nested probabilistic operators,
the evaluation of U, X and � formulas can be reduced to time-bounded or time
unbounded reachability problems, as sub-formula are states formulas. Once sub-
formulas have been evaluated on each state, they can be replaced by a proposition
in the upper sub-formulas, until the root is reached. For CTL-type formulas, one
proceeds similarly to section 1.3.1: the formula is translated into an automaton,
then the synchronized product of the stochastic system with the automaton is built.
This product is still a stochastic system, and the model-checking problem is thus
reduced to time-unbounded reachability. However, if the formula is large, the size
of the automaton and thus the size of the product may become problematic. The
reader may refer to chapter 10 of Principles of Model Checking [11] for more details
about the model-checking of probabilistic systems.

Most numerical model-checking algorithms rely on matrix vector multiplication,
usually taking advantage of the sparsity of transition probability matrices. However,
these computations are difficult to parallelize. The tool Marcie [46] features a
parallel implementation of this method, but still a non negligible part of the
computation cannot be performed in parallel.

In order to perform numerical model-checking, strong probabilistic hypotheses
on the stochastic system to be analyzed are mandatory. The easiest case is to
suppose that the system is Markovian and has a finite state space. Note that the
system of linear equations produced during the computation can still be huge, and
that the computation of solutions may be difficult and therefore require iterative
methods. This implies that only approximate solutions of such systems can be
obtained.

In the case of using a time automaton for the specification of the formula, there
exist efficient techniques only if there is at most one clock in the automaton, that are
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described in [36] and [17]. More generally, numerical approaches can be adapted to
deal with non determinism [71] and to tackle model-checking problems on Markov
Decision Processes by alternating probabilistic transitions with non-deterministic
ones.

This approach has been efficiently implemented in several tools with different
types of Markovian systems, such as:

• Prism [52] deals with Discrete and Continuous Time Markov Chains, probabilistic
automatas and Markov Decision Processes;

• Uppaal [20] deals with various types of automata;
• GreatSPN [8] and Marcie [46] deal with Stochastic Petri nets.

1.3.3 Statistical model-checking
The alternative to numerical approach when dealing with large systems is to
use statistical methods. The statistical model checking relies on a Monte Carlo
algorithm to estimate the probability of interest. More precisely, given a linear
temporal logic formula, one defines a random variable X which takes 1 as value
when the trajectory satisfies the formula and 0 otherwise. Thus, this variable
follows a Bernouilli law, and one computes its expected value E(X). The Monte
Carlo algorithm simulates a large number N of trajectories, and counts the number
of those trajectories satisfying the specification. An estimation of the probability is
obtained as the ratio of the number of successful trajectories on the total number
of trajectories. The random variable Z is defined as the mean of N independent
copies of X: Z = 1

N

∑N
i=1Xi.

Example 18.

1

1

x

y

Figure 1.16: Does the realisation (x, y) belong in the quarter-circle?

Let X and Y be two random variables of distribution UNIF(0, 1). Let Z be a
random variable such that an observation z is 1 when the realisations x and y
satisfy x2 + y2 ≤ 1 and 0 otherwise. This definition means that z is equal to 1 if
and only if (x, y) belong in the quarter-circle of radius 1 (see Figure 1.16), which
has an area of π

4 . Thus E(Z) = π
4 .
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UNIF(0,1)

e1

UNIF(0,1)

e2

(a)

ẋ = 1
ẏ = 0
s0

ẋ = 0
ẏ = 1
s1

s2

s3

e1
e2; x

2 + y
2 ≤ 1; r := 4

e2 ; x2 + y 2
> 1; r := 0E(LAST(r))

(b)

Figure 1.17: Computing π using a HASL formula and a stochastic net.

A trajectory is obtained by synchronizing the LHA shown in Figure 1.17(b) with
the stochastic net shown in Figure 1.17(a), producing random values for x (the
firing delay of e1) and y (the firing delay of e2) respectively. The last value r is 4
if x2 + y2 ≤ 1, and 0 otherwise. In both case, the last synchronisation lead to a
final state. The expression E(LAST (r)) corresponds to the expected value of r at
the end of a trajectory, which is equal to π, four times the value of E(Z).

It is easy to parallelize this method: it suffices to run several “simulators” of
the system on different processes (either on different processors or machines), and
take the mean result of trajectories of all simulators. The main difficulty comes
from choosing the right random number generator so that all generated trajectories
are independent one from each other. The only sequential operation being the
computation of the mean value and the confidence interval. This implies there
is almost no additional computing cost in using parallel computations. These
statistical methods can be naturally extended to performance evaluation: instead
of computing a probability, we compute the expected values of random variables
whose values depend on trajectories of the systems.

Statistical procedures We now detail the different proccedures that are avail-
able in Cosmos for the evaluation of HASL expressions:

• Sequential hypothesis testing [73]. This procedure checks whether a prob-
ability is above a threshold. Parameters of this procedure are the probability
of an error for a positive answer and a negative answer and the width of the
indifference region. When the value of the probability is outside the indifference
interval, the probability of an error is bounded by the parameter corresponding
to the answer.
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• Chernoff-Hoeffding bounds [48]. This static method requires three related
parameters, each of them can be determined by the two others. These parameters
are the interval width, the confidence level and the number of samples. It
outputs a confidence interval whose width satisfies the requirement and where
the probabilistic guarantee is exact. It applies to estimate the expectation of a
bounded random variable.

• Chow-Robbins bounds [32]. This sequential method requires two parameters:
the interval width and the confidence level. It outputs an interval whose width
satisfies the requirement and where the probabilistic guarantee is asymptotic
w.r.t. the width of the interval. It applies to estimate the expectation of a
random variable, when no known bound is available.

• Gaussian approximation. This static method requires two parameters. The
number of samples has to be given. The second parameter is either the confidence
level or the interval width, one of these determining the other one. It ouputs
an interval whose width satisfies the requirement and where the probabilistic
guarantee is asymptotic w.r.t. the number of samples. It applies to estimate the
expectation of a random variable. It is based on the central limit theorem.

• Clopper-Pearson bound [33] This static method computes confidence inter-
vals for binomial distributions. It takes as input three parameters, the total
number of samples, the confidence level and the number of successful samples
and outputs a confidence interval for the probability of a sample to be successful.

Comparison of numerical and statistical methods. The statistical methods
have several advantages compared to the numerical methods:

• the memory required to simulate one trajectory of the system is usually very
small (and the possible values of the random variables are rarely large), making
the memory requirement of a statistical model-checker very low. A contrario,
since models and formulas may introduce a large size increase of either the
probability matrix or the model/formula product, memory is a bottleneck of
numerical methods;

• we have seen in section 1.3.2 that numerical methods are only usable on a very
restricted set of models. A contrario, statistical methods only need an operational
semantic of the stochastic model;

• as already mentioned, it is straightforward to parallelize the simulation process
and it comes with no meaningful additional computation cost. A contrario,
parallelization is much more difficult for numerical model-checking;

• complex linear time properties, expressed for instance using the HASL logic (see
section 1.2.3), can be efficiently evaluated using statistical model-checkers while
numerical model checkers require restricted temporal logics.

However, statistical methods have several drawbacks such as:
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• the computation time may be a problem in the case of tight confidence intervals,
that one needs for precise results. In general, dividing by two the width of the
confidence interval requires performing four time more simulations;

• it is not suited for the evaluation of logics based on state formulas;
• as it is possible to simulate only finite trajectories, a statistical model-checking

procedure cannot evaluate the unbounded until operator φUψ; a workaround is
described in [45];

• a crude Monte carlo estimator is unsuitable to compute very small probabilities,
such as the probability of a rare event; this specific problem is widely discussed
in [14].

1.3.4 Tools for statistical model-checking
In this section, which is only a slight improvement of the Related Tools and Tool
Evaluation sections of [12], we list and compare a certain number of tools that can
be used for statistical model-checking. Figures of this section are taken directly
from the journal article.

Related tools. Most of these tools have been briefly mentioned with respect to
their numerical model-checking features.

Cosmos1 [12] is a statistical model-checker for the Hybrid Automata Stochastic
Logic over high-level stochastic Petri nets. It has been developed first during Hilal
Djafri’s PhD [34] at LSV, ENS Cachan. It was improved, adding HASL support
in [13], and rare event handling in Benoît Barbot’s PhD [14] still at LSV, ENS
Cachan. As several improvements have been made during this PhD, the tool is
presented more thoroughly in Chapter 4. It is currently maintained by Benoît
Barbot.

Prism2 [52] is a tool for performing model checking on probabilistic models,
that has been used for numerous applications [58]. It can perform numerical model-
checking on discrete and continuous-time Markov chains, Markov decision processes
and probabilistic timed automata. Its statistical part only deals with Markov chains.
The Prism language defines these probabilistic systems with a synchronised product
between reactive modules and can, in this manner, describe large systems in a
compact way. The property language subsumes several well-known probabilistic
temporal logics, including CSL and PCTL.

Uppaal3 [20] is a verification tool that includes many formalisms, such as
timed automata, or timed games. It supports automata-based and game-based

1Cosmos is available at http://cosmos.lacl.fr/.
2Prism is available at https://www.prismmodelchecker.org/.
3Uppaal is available at http://www.uppaal.org/

http://cosmos.lacl.fr/
https://www.prismmodelchecker.org/
http://www.uppaal.org/
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verification techniques, and has shown its ability to analyse large scale applications.
A statistical-model checker engine has been added in 2011 in the form of an
extension4 (here called Uppaal-smc), enriching Uppaal with the ability to verify
timed systems with stochastic semantics. The specification language, PLTL, is an
adaptation of LTL with path operators substitued for quantifiers and with bounded
Until (U) operator.

Plasma5 [49] is a platform dedicated for statistical model-checking. It accepts
the Prism language for its models, extended with more general distributions and a
dedicated biological language. Its property specification language is a restricted
version of PLTL, with a single threshold operator. Furthermore, it is built with
a plugin system giving the ability for developers to extend it. It can also be
integrated, via a library, to another software.

Ymer6 [74] is a statistical model checker for CTMCs and generalised semi-
Markov processes described using the PRISM language. Its property specification
language is a fragment of CSL without the steady-state operator but including the
unbounded Until (U) operator. It seems to be no more maintained.

Marcie7 [46] is a tool for qualitative and quantitative analysis of generalised
stochastic Petri nets, that relies on Interval Decision Diagrams to represent symbol-
ically the state space of the Petri net. It also has a simulation engine for the model
checking of PLTL formulas. Marcie has been mainly developed for the study of
chemical reaction networks.

Tool Evaluation. The experiments were run with Cosmos, Prism (version
4.0.2), Uppaal-smc (version 4.1.13), Plasma (version 1.1.4), Ymer (version 3.1)
and Marcie (version 1178M). Two models were considered:

• the first model is a Tandem Queuing Network (TQN) taken from [47]. The
interarrival time of clients in the tandem queue follows an exponential distribution,
the service of the first queue follows a Cox2 distribution and the service of the
second queue follows an exponential distribution. A state of this system is
composed of the number of clients in each queue and the state of service of the
first queue when non empty.

• the second model is a model of dining philosophers.

Parameters. For the experiments, the following parameters were used: the queue
capacity N = 5, the arrival rate λ = 20, the service rates on the first phase in the

4This extension is available at http://people.cs.aau.dk/~adavid/smc/
5Plasma is available at https://project.inria.fr/plasma-lab/
6Ymer is available through a git repository at https://github.com/hlsyounes/ymer
7Marcie is available at http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/

Marcie

http://people.cs.aau.dk/~adavid/smc/
https://project.inria.fr/plasma-lab/
https://github.com/hlsyounes/ymer
http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Marcie
http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Marcie
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first queue µ1 = 0.2 and µ′1 = 1.8 (the latter corresponding to clients without a
second service phase) and the service rate of the second phase in the first queue is
µ2 = 2. The service rate of the second queue is κ = 4.

The dining philosopher model is a mutual exclusion problem where N philoso-
phers are sitting around a table. They can decide to eat by taking two forks, that
are shared with their right and left neighbours. A contention problem may arise
due to the sharing of resources. For the experiments, the rate of all exponential
distribution is chosen equal to 10.

Performance indices. For the tandem queue system, we consider the following
time-bounded reachability measure: the probability φTQS that the first queue
of the tandem gets full within time T . For the dining philosophers, it is the
probability φDQM of reaching a deadlock state before N philosophers eat. Such
a deadlock occurs when all philosophers have taken one fork. Those properties
can be straightforwardly encoded in CSL and in HASL: equivalent verification
experimentations can be performed by all tools.

Experiment settings. The following statistical parameters have been set: the
confidence level is 0.95, and the width of the confidence interval 0.005. For
the hypothesis testing, the probability of error is 0.005 and the width of the
indifference region is set to 0.001. The other parameters have been set to default
values. The tools must generate a large number of trajectories to be able to fulfill
these parameters. Most tools can take advantage of parallelisation; however the
experiments have been executed on a single core of a 2.4 GHz Intel Core 2 Duo.

Comments. Figure 1.18(a) shows the runtime for the dining philosopher models
as a function of the number of philosophers. At the time of [12], Cosmos is the
fastest tool using Chernoff-Hoeffding bounds. For a hundred philosophers, Marcie
is 1.4 times slower, Uppaal-smc is 1.5 times slower, Plasma is 1.9 times slower,
and Prism using APMC8 is 2.5 times slower. Among the tools using sequential
procedures, the two versions of Prism have similar run times, Cosmos being up
to 1.9 times faster.

Figure 1.18(b) shows the runtime comparison with different time bounds T for
the tandem queue system experiment. Two kinds of behaviours for tools can be
distinguished, depending on the applied statistic method. For the first one, that
corresponds to the Chernoff-Hoerding method, the simulation time is increasing
with the time bound T . About 295 000 trajectories are required to obtain the
specified confidence interval. For the second one, corresponding to sequential
confidence interval methods, the required number of sampling decreases when

8Approximate Probabilistic Model Checking



1.3. VERIFICATION METHODS 37

(a) The philosophers model (b) The TQS model

Figure 1.18: Comparison of simulation time for probability measures

Time NumValue p ≥? Uppaal Prism Ymer Cosmos
10 0.17505 0.17 4.78 12.02 3.29 3.36
20 0.33574 0.33 11.54 23.78 7.48 5.08
40 0.56931 0.564 21.23 46.47 14.00 7.78
80 0.81894 0.814 20.10 43.46 13.01 7.60
200 0.98655 0.981 2.81 8.10 1.92 2.74

Table 1.1: Runtime comparison for the TQS for Sequential Testing

the time bound increases. It is a consequence of the evolution of the satisfaction
probability of φTQS, which goes to 1 when T goes to infinity. Cosmos is again
the fastest of the tools using a Chernoff-Hoerding method. When the time bound
is T = 200, Plasma is approximately 2.6 times slower, Marcie 3.7 times slower,
Uppaal 4.2 times slower, and Prism using APMC 6.5 times slower. Among the
tools using sequential procedures, when the time bound is 40, Cosmos is still the
fastest and the two versions of Prism have similar runtime, but 2.8 times slower
than Cosmos.

Sequential hypothesis testing for Tandem Queue System. The results on
hypothesis testing are reported in Table 1.1. Each value is the mean over 100
experiments. The threshold value for the hypothesis is always very close to the
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Figure 1.19: Runtime for a probability measure of the TQS model for Sequential
Testing

numerical value, in order to increase the number of trajectories that tools have to
perform. This number of trajectory is similar for each tool compared. Figure 1.19
shows the runtime comparison with different Time Bounds, restricted to sequential
testing. In most cases, Cosmos is the fastest, Ymer is up to 1.8 times slower,
Uppaal 2.8 times slower and Prism 6 times slower.

Accuracy comparison. Finally, to assess the accuracy of Cosmos, its output
has been compared to the one produced by Prism via both its numerial engine and
its statistical engine (with confidence level 99.99% and 0.01 interval width). The
results indicate that Cosmos and the statistical engine of Prism are comparably
accurate with the estimated intervals. Both always contains the value obtained
using the numerical engine of Prism. This numerical value is also used to perform
a coverage test of Cosmos: the ratio of simulation that return a confidence interval
containing the real value is always close to the confidence level.



CHAPTER 2

APPROACHES FOR THE CONTROL OF
AUTONOMOUS VEHICLES

Abstract. The control of autonomous vehicles triggers numerous issues: how to
deal with the mechanical constraints of the vehicles? how to take into account the
uncontrolled behaviour of other vehicles or pedestrians? how to specify several road
situations such as crossing, or entrance ramps? what are the relevant safety indices?
etc. Given the huge scope of these tasks, researchers have tackled subproblems, by
identifying significant case studies. The goals related to these subproblems can be
classified in two different ways:

• must the controller be automatically generated (synthesised) or manually designed
and then verified?

• are the involved methods based on geometry or logic?
Given the diversity and the number of related publications, we only present a
selective bibliography which provides relevant examples for each kind of approach.
We emphasize that most of the methods do not support probabilities and, as such,
cannot take uncertainties into account and quantify risk.
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2.1 Geometry-based approaches

2.1.1 Verifying Coordinated Evasive Maneuvers [3]
Objective. The goal is to check whether the trajectories given by another module
(the planner) are robust with respect to noise and vehicle deviations.

Assumptions. In this communication, one assumes that checking evasive ma-
neuvers is done in two steps:

• every vehicle computes periodically its spatiotemporal trajectory in the current
situation, and broadcasts it to other vehicles;

• then, every controller checks whether this set of trajectories is collision-free. In
this case, these trajectories are selected. In the other case, the process is iterated
with additional information.

The study is restricted to the analysis of this second phase.
While broadcasting full trajectories may be a time and space-consuming task, it

provides a more accurate information than the one only given by the position and
speed of other vehicles (see Figure 2.1, all figures from this section are extracted from
the communication). Indeed, the latter case would require a probabilistic model of
the behaviour of these vehicles. In Figure 2.1(b), the support of random trajectories
is illustrated by the colored cones, and it results in a probability of collision. This
is addressed in [37] and [4], and induces a more costly and conservative controller
design.

(a): Known trajectories

(b): Unknown trajectories

Figure 2.1: Two controller models
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(a) Evasion manoeuver with aA
lat = 0.4g (b) Evasion manoeuver with aA

lat = 0.6g

Figure 2.2: Occupancy sets for evasion manoeuvers

Computing trajectories with disturbances. In order to check for robustness,
the model is enlarged with perturbations, leading to a deviation from the reference
trajectory, which is specified by the following equation:

ẋ ∈ Ax+ Bu (2.1)

where:
• x is the state vector, containing the deviations to the reference trajectory and

their derivatives;
• u is the input vector, containing the curvature of the reference trajectory and

the steering angle of the vehicle;
• A and B are interval matrices that represent the uncertainty over the trajectory.
The actual trajectory is described by:

ẋ(t) = Ax(t) +Bu(t) (2.2)

where A and B are matrices compatible with A and B, and u(t) ∈ U .
A temporal discretisation with time parameter r is used to solve this equation

system. It consists in iteratively building the set of possible positions in the time
interval [kr, (k + 1)r] based on the set of possible positions in [(k − 1)r, kr]. Once
this discretisation is done, the solution of the homogenous equation is computed
then the inhomogenous part is added. Such a process provides a sequence of
polytopes whose union is the occupancy set over the trajectory.

If the occupancy sets do not intersect over a time interval [0, tf ] then the
manoeveurs of all vehicles are safe.

Case of wrong-way driver. The usefulness of this method is illustrated with
the case study of a vehicle going the wrong way. This vehicle puts at risk two
autonomous vehicles, on a three-lane road. To reduce the risk of accident, both
vehicles plan a lane-changing manoeuver, as shown in Figure 2.2.
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Conclusion. This approach has been validated by several case studies. It can
be generalised to the case of multiple trajectories provided by the planner. In this
case, the controller selects the one minimising intersection.

2.1.2 Time-Memory Tradeoff for Collision Detection [63]
Objective. The objective is to provide an approach to reduce the computation
time of collision detection in order to match human reaction delay.

Assumptions. There are two vehicles: the controlled one ego and another vehicle
other of fixed sizes, both represented by rectangles located on a given area.

We suppose that the generated trajectory is represented by a sequence of
connected segments of fixed length δ > 0. Moreover, for two adjacent segments,
the difference between their orientations is assumed lower than φmax ∈ [0, π2 [.
Furthermore, the time evaluation interval [t0, tn] is splitted in intervals [tk−1, tk] for
k ∈ J1, nK.

Database. The database consists of a single relation indicating whether the two
rectangles intersect or not. The value domain is finite, due to two factors: the
boundedness of the area, and the discretisation of the positions. As the size of the
vehicle is supposed fixed, the fields of the relation are the center and orientation of
each vehicle, and a boolean indicating if there is an intersection.

Verification of trajectories. Two trajectories are considered: the trajectory
of the controlled vehicle, and the center of the lane on which the other vehicle is
located. The safety verification of the trajectory repeats the following steps, until
tn:

1. compute reachability and occupation sets of the vehicles, taking into account
their dynamics and the uncertainties over [tk−1, tk];

2. cover the occupation set of the vehicles by rectangles;
3. checks if there is a collision using the database.

Conclusion. A benchmark of the procedure has been done using a computer
equipped with a 2.80GHz i5-4330M processor, 12GB of RAM and the following
librairies and softwares:

• for the construction of the database, MATLAB 2014a (and it required 23.37MB
of memory);

• for time measures, the Windows API (QueryPerformanceCounter),
• for collision detection algorithms, a C++ program compiled using Microsoft

Visual C++ 2013 (with the O2 optimisations).
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In the case of the collision detection over random rectangles, the proposed
approach is faster by a factor 16.04. For verifying planned trajectories, the factor
is 8.9.

2.2 Logic-based approaches

2.2.1 Control for Collision Avoidance [25]
Objective. The goal is to build a robust controller on a motorway segment.

Assumptions. Every vehicle of the segment is controlled. During the control
phase, at most one vehicle may lose control and behave in a random way.

n lanes
 a2 a0

a1︸ ︷︷ ︸
` horizontal positions

Figure 2.3: A motorway segment

A segment of the motorway consists of n` positions (as shown in Figure 2.3).
A position is defined by its coordinates (x, y) with y ∈ J0, n − 1K the lane and
x ∈ J0, `− 1K the horizontal position.

Physical parameters (such as the maximal speed vmax, maximal acceleration
amax, minimum entry speed vmin and minimum delay between two entering
vehicles) are assumed to be related to the motorway section. Moreover, it is
supposed that state and position changes are synchronous. We give below a
specification for relevant information of a vehicle and the configuration of a section:

A vehicle present in the section is a tuple a = 〈a.x, a.y, a.v, a.c〉 where: (a.x, a.y)
is the position of a; a.v ∈ J0, vmaxK is its current horizontal speed; and a.c ∈ B a
boolean denoting whether the vehicle is controllable. A configuration of the section
is a tuple s = 〈d,A〉 where A is a finite set of vehicles, and d is an integer array
indexed by the lanes such that d[i] denotes the time elapsed since the last entrance
on lane i when d[i] < dmin, and d[i] = dmin otherwise.

A possible configuration is shown in Figure 2.3. We consider a motorway
segment of one kilometer, with two lanes and ` = 100 positions. There are at most
25 vehicles on each lane, due to the safety distance. The speed values are in J0, 4K,
which corresponds to a maximum speed of 40m.s−1. The possible acceleration
values are −1, 0 and 1.
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Principle. This situation can be seen as a turn-based game between two players,
environment and controller. It is a zero-sum game as the environment tries to force
a collision and the controller wants to avoid it.

Description of the game. A configuration of the game is a tuple s = 〈d,A〉
where A is a finite set of vehicles, and d is an integer array indexed by the lanes
such that d[i] denotes the time elapsed since the last entrance on lane i when
d[i] < dmin, and d[i] = dmin otherwise.

The next paragraphs describe the behaviour of the system in a formal way.
Vehicle movement constraints. Let a = 〈a.x, a.y, a.v, a.c〉 be a vehicle, its next

state is written as 〈a.x′, a.y′, a.v′, a.c〉, where:
• a.x′ = a.x+ a.v (and if a.x′ > ` then the vehicle is removed);
• a.y′ ∈ [a.y − 1, a.y + 1] ∩ [0, n− 1] if a.v > 0 (a.y′ = a.y otherwise);
• a.v′ ∈ [a.v − amax, a.v + amax] ∩ [0, vmax].

The controllability status is not modified by a vehicle move. The speed of the
vehicle can change in a non-deterministic manner within the requirements of the
motorway segment. If the vehicle has a positive speed, it can also change lane.

The system evolves from a state s = 〈d,A〉 to a state s′ = 〈d′, A′〉 in two steps:
• the environment step: a vehicle can be marked as non-controlled (if there is no

such one), some vehicles may be added to the segment, and the non-controlled
vehicle is moved (if it exists);

• the controller step: all controlled vehicles are moved.
Let s = 〈d,A〉 be a configuration. Then s1 = 〈d1, A1〉 can be reached by a

environment transition by the following operations:
1. If no vehicle in A is uncontrollable, then the environment may select a ∈ A

and set a.c = ⊥;
2. For every lane i, the value d1[i] = min(d(i] + 1, dmin) is computed and a new

vehicle (a.x = 0, a.y = i, a.v ∈ {vmin, . . . , vmax}, a.c = > may be inserted
if d1[i] = dmin; the delay must then be reinitialised: d1[i] = 0;

3. If there is a non-controlled vehicle a, it can be moved according to vehicle
movement constraints.

Let s1 = 〈d1, A1〉 be a configuration (obtained after an environment step), then
s′ = 〈d′, A′〉 can be reached in one controller transition by moving each controlled
vehicle of A1 according to vehicle movement constraints.

Let s = 〈d,A〉 be a configuration. Then s′ = 〈d′, A′〉 can be reached by a
complete transition if there exists an intermediate configuration s1 = 〈d1, A1〉 such
that an environment transition leads from s to s1 and a controller transition leads
from s1 to s′. Moreover, for every a1 6= a2 ∈ A ∩ A′:

1. a1.x
′ 6= a2.x

′ ∨ a1.y
′ 6= a2.y

′ (two distinct vehicles do not share position);
2. If a1.x < a2.x, then either a1.x

′ < a2.x
′ or (a2.x

′ ≤ a1.x
′ and a1.y = a1.y

′ and
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Figure 2.4: Risky behaviours to be avoided

a2.y = a2.y
′ and a1.y 6= a2.y) : if a1 is behind a2, then either a1 stays behind

or the two vehicles stay in their respective lanes (only if they were in separate
lanes);

3. If a1.x = a2.x then a1.y = a1.y
′ and a2.y = a2.y

′ : if the two vehicles start
from the same horizontal position, they stay in their respective lanes.

These additional conditions help to avoid risky behaviours, as shown in Figure 2.4
extracted from [25].

It is well known that for such games, there exist positional winning strategies. If
the initial state is winning for the controller, its strategy gives us an implementation
of the controller; in the other case, the environment strategy provides a failure
scenario that may help to modify the settings of the problem in such a way that
the controller is winning. Reachability games are solved in polynomial time by a
saturation algorithm, that we now describe.

Let S be the set of all configurations and let s0 be the initial configuration, in
which the motorway section is empty. For s ∈ S we define:
• Succe(s) the set of successors of s by a environment transition;
• Succc(s) the set of successors of s by a controller transition.

The set Sfail = {s | Succc(s) = ∅} denotes the set of configurations in which the
controller can not avoid a collision and we define S∗ = S \ Sfail .

A strategy is a mapping f : S∗ → S such that f(s) ∈ Succc(s). The correspond-
ing set of states Gf (s0) = Gc

f (s0) ∪Ge
f (s0) is defined inductively by:

• s0 ∈ Gc
f (s0);

• if s ∈ Gc
f (s0) then ∀s′ ∈ Succe(s), s′ ∈ Ge

f (s0)
• if s ∈ Ge

f (s0) ∩ S∗ then f(s) ∈ Gc
f (s0).

It is a winning strategy if Ge
f (s0) ∩ Sfail = ∅.

Informally, the standard algorithm searching for a winning strategy is as follows.
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Let Sbadc (resp. Sbade) be the set of configurations from which the controller will
lose (resp. the environment will win) if it its turn to play.

1. These sets are initially defined by: Sbade = Sfail and Sbadc = ∅;
2. These two sets are enriched using the following rules:

a Let s be a configuration such that ∀s′ ∈ Succc(s), s′ ∈ Sbade, then
Sbadc = Sbadc ∪ {s};

b Let s be a configuration such that ∃s′ ∈ Succe(s), s′ ∈ Sbadc, then
Sbade = Sbade ∪ {s}.

3. The algorithm stops if either s0 ∈ Sbadc (in which case there is no winning
strategy for the controller), or when no rule can be applied anymore.

This algorithm is polynomial with respect to the size of the system. However,
such a system is generally very big, which requires to define adapted data structures
for the implementation.
Example 19.

/
q1

/ q3/q2

/
q4

,

, ,

,

/ qcrash

Figure 2.5: Illustrating the saturation algorithm

In Figure 2.5, we present a simplified version where the states are partitioned into
two sets: the states where the environment can play (represented with squares),
and those where the controller can play (represented by circles). The states that
lead to a collision are represented in red.
First, we have Sbade = Sfail = {qcrash} and Sbadc = ∅. During the first step, the
controller state q4 that can only lead to a crash is added to Sbadc. Then, the
environment states q2 and q3 leading to q4 ∈ Sbadc are added to Sbade. Finally,
the controller state q1 which can only lead to Sbade is added to Sbadc. The green
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states are safe states.

Conclusion. Other works have implemented the algorithm described above. In
particular, in [75] the objective is to generate a controller for a system described
by a Java program.

2.2.2 Verification of Smart Intersections [59]
Objective. The case study presented in the chapter 6 of this PhD thesis focuses
on Cooperative Intersection Collision Avoidance Systems (CICAS) that would
enhance intersections with controllers that communicate with “smart” vehicles.
More specifically, it focuses on the CICAS for Stop-Sign Assist implementation
(CICAS-SSA), where a driver crossing the road needs to decide when it enters in
the crossing, depending on the gaps between other vehicles and the crossing. The
verification objective is to ensure that, if the subject vehicle1 driver follows the
system advice, there is no collision.

Assumptions. The other vehicles behave according to the expected behaviour
on a motorway.

Principles. The input of the method is the strategy of the intersection controller,
which is specified as follows: the intersection controller allows the subject vehicle
to enter the crossing only if all the oncoming vehicles are far enough away (beyond
a fixed distance) from the intersection. Note that it is an advice, and the vehicle
may wait until the next one.

A hierarchical heterogeneous tree (see Figure 2.6 extracted from [59]) is built:
the idea is to decompose the problem into subproblems. The basic subproblems
(i.e. located at the leaves of the tree) are modelled with an appropriate formalism
and solved by a dedicated method. The other subproblems combine subproblems
already handled and are then solved by compositional methods. More specifically,
the compositional methods are either conjunctive, disjunctive, or disjunctive with
switching (see below, node 3j).

We only present some subproblems of the case study, one for each kind of
composition.

Node 01. The root presents a case of conjunction. The first level nodes corre-
spond to independent aspects of the system:

• in Node 11, the goal is to estimate the driver’s response time;
1the vehicle at the stop-sign, served by CICAS-SSA
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Figure 2.6: CICAS-SSA hierarchical heterogeneous verification tree ([59], p. 99)
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• in Node 12, the goal is to do worst-case execution time analysis on the compu-
tational model – estimating the delay in which the response of the intersection
controller is given;

• in Node 14, the goal is to make sure that the error of the sensing subsystem is
always bounded, within a given range of positions and velocities;

• in Node 15, the goal is to find the upper bound on the communication delay
between the sensing subsystem and the computation subsystem

• in Node 13 (see below), the goal is to establish that the subject vehicle is not
in the intersection at the same time as another vehicle, for given values on
computation time, communication time, sensing errors and driver response time.

The Node 01 is a general case of the Node 13, that is completed with the analysis
from Node 11, 12, 14 and 15. Therefore, this conjunctive abstraction completes
the verification task of Node 01 (if the verification tasks of all first level nodes have
been handled).

Node 13. This node corresponds to a case of disjunction. The goal described
in this node is to ensure that the subject vehicle is not in the intersection at the
same time as another vehicle. The verification model M13 (shown in Figure 2.7) is
consists of two hybrid automata components:

• the Major Road component models the dynamics of oncoming vehicles, where
x represents the position of the nearest2 oncoming vehicle from the intersection
(called the principal other vehicle). The value of x is always negative, by the
definition of the intersection (which is located at 0, and x is increasing). Note that
when a vehicle reaches the intersection, another vehicle becomes this principal
other vehicle and x decreases to its position.

• the SV components models the subject vehicle, which has to commit to a
direction: either going straight, or turning left or right. It also represents the
controller, through the conditions to move from a conflict state to a clear
state. The position variables are distinguished with respect to the decision of
the vehicle.

The collision-freedom specification S13 can be defined by the temporal logic formula
2.3 where constants are chosen based on a typical highway intersection geometry.

�¬((x = 0∧0 < ys < 4.5)∨(x = 0∧0 < yr < 170)∨(x = 0∧0 < yl < 180) (2.3)

Models M21, M22 and M23 are constructed from M13 by enforcing the choice of
the vehicle: in M21 it has to go left, in M22 to go straight, and in M23 it has to go
right. These are similar to the model shown in Figure 2.7 except we use only one
of the three right branches, and enforce its variable name on the waiting state.

2nearest by time-to-intersection, determined from positions and approach velocities
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Figure 2.7: Verification model M13 ([59], p. 101)

Figure 2.8: Inter-model switching that covers M3j ([59], p. 106)

Those verification models correspond to nodes 21, 22 and 23 of the verification tree
of Figure 2.6.

Using behaviour relations to ensure that there is no variable conflicts between
the three submodels, the authors show that there are heterogeneous implications
and that finally if all these submodels verify their respective specifications, M13
satisfies S13, as depicted in the verification tree shown in Figure 2.6.

Node 3j. This node corresponds to a case of a disjonction with mode switching.
The goal described by this node is to ensure that the subject vehicle and a specified
car are never in the intersection at the same time (in the case of a single lane).
Figure 2.8 shows an inter-model switching between:

• M41, initially safe, where the incoming vehicle is far enough from the intersection,
and the subject vehicle can cross the intersection if it chooses to;

• M42, initially unsafe, where the incoming vehicle is too close and the subject
vehicle must stop.

Observe that the designer (or the safety engineer) must provide this inter-model
switching. This reduces the dimension (number of vehicles involved) to one of the
single-lane multi-vehicle Major Road models to one for single-lane single-principal
other vehicle. The different subject vehicle actions for the two models can be
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analyzed independently for safety while the system is in those modes.

Conclusion. This application chapter tackles a high-level specification (the
subject vehicle must not collide with other vehicles) by splitting it into subproblems,
and applying the various methods developed earlier in the thesis. This early
separation of various aspects of the verification model is useful in keeping the
analysis complexity at check. This proof of concept may be applied to other
objectives, including the vehicle industry, which heavily uses model-based designs.
However, this kind of methods is limited: it is not always possible to do such a
decomposition, and the mode switching operator requires additional modeling.

2.2.3 Formal Approach to Vehicle Coordination [6]
Objective. The goal of this paper is to provide a formalism describing coordi-
nation protocols between autonomous vehicles such that it can be encoded as a
constraint satisfaction problem and solved by standard tools, like Z3.

Assumptions. Each vehicle is equipped with an autonomous controller and can
communicate with other vehicles.

Figure 2.9: System Architecture

Principle. The system consists of (see Figure 2.9, all figures are extracted from
[6]) a control module represented by an automaton, the coordination protocol,
other cars, the network and of the environment. This work adopts the point of
view of a single vehicle. The behaviour of the other vehicles is modelled by a set of
constraints overapproximating their possible trajectories. This set of constraints,
with the property, is then given to a solver (such as Z3).

Case Study: Simple Intersection. The case study consists of a four way
intersection. The entity A is approaching the intersection and is assumed not to
turn. There are four regions for this entity in relation to the intersection: “far
away”, “close”, “in intersection” and “passed” (see Figure 2.10).
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Figure 2.10: Intersection

Using this decomposition, an automaton describing the behaviour of the vehicle
is built (see Figure 2.11), considering the need of a minimal speed for the crossing.
The intersection is considered as a resource. The goal is to check that every
reachable state satisfies a safety property, such as safety distance preservation.

Figure 2.11: Vehicle Control Automaton

Conclusion. The solver approach has been validated by the case study, partly
solved using Z3. The entire model is composed of 825 lines of SMT-lib code
(including comments), and the verification by Z3 took 14 seconds on a Dell optiplex
990 with a 3.4 GHz Intel Core i7 processor, using 109MB of memory and generating
965 000 equations. There are limitations on the expressivity of the formulas
(euclidian distance has not been implemented by the authors). Moreover, some
features of the approach are not sufficiently described in order to convince the
reader that it may be applied to a more general context.



Part II

Contributions

53





CHAPTER 3

AN OPERATIONAL SEMANTICS FOR SIMULINK

Abstract. We briefly mentioned Simulink® in section 1.1 as a more complex
model than hybrid automata. This tool from MathWorks implements a modelling
language and simulation engine, largely used in the French automotive industry for
the design of controllers for autonomous vehicles. However, the model behaviours
are not defined formally. For this reason, several works proposed formal translations
from (subsets of) Simulink blocks to other models like hybrid automata [69, 2],
or languages like Lustre [70]. Other works directly define exact semantics [21] or
operational semantics [24] for Simulink. We follow the latter approach and propose
semantics for a significant fragment of Simulink. We proceed in two steps: we first
develop an exact version, and then enrich it with effective procedures with the aim
to integrate it into the model-checker Cosmos.
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3.1 Syntax
We first introduce a formal syntax for Simulink block diagrams, that we call here
Simulink models or, shortly, SK-models. An SK-model consists of a set of blocks
connected by wires supporting signals. More precisely, blocks act as operators that
transform their input signals into output signals.

3.1.1 Types, signals and operators
Types are associated with signals and operators. We denote by Type the set of
types used in SK-models.
Definition 32 (Basic types and constructors)

Basic types are a subset of Type containing subsets of the set R of real numbers:
• booleans B = {0, 1};
• (un)signed integers, either represented with varying number of bits (int8,

uint8, int16, uint16, int32, uint32) or with usual sets N or Z;
• floating numbers (double, single) or the entire set of real numbers R.
A constructor is a function Typen → Type, where n ∈ N is the arity of the
constructor.

Remark. This definition covers both exact (N,Z,R) and operational (other types)
semantics.

Example 20. The constructor Tuple3 multiplexes three signals into one, like in
Tuple3(N,R,R).

Signals will be evaluated over a time domain, which will usually be a finite
interval of R denoted by T = [tinit, tend] and called the simulation interval. Except
for a finite number of discontinuities, the signals are smooth functions because they
are solutions of differential equations over subintervals:
Definition 33 (Signals)

A signal of type Tp ∈ Type is a right-continuous piecewise smooth function
s : T→ Tp, admitting a left limit denoted by s(t−) for each t ∈ T.
We denote by type(s) the type of s and by SigT(Tp) the set of signals of type
Tp defined on T.

Discontinuities are handled like in discrete event systems by applying instanta-
neous operations to the left-limit s(t−) to obtain the value s(t).
Definition 34 (Operators)

An operator is a function op : SigT(Tp1) × . . . × SigT(Tpm) → SigT(Tp) such
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that for each t ∈ T, op(s1, . . . , sm)(t) only depends on the restriction over
[tinit, t] of the signals (si)1≤i≤m.

This restriction is natural as an operator cannot predict the future values of its
input signals.

3.1.2 Blocks

A block contains a tuple of operators generating output signals from input signals.
Blocks are classified using three criteria:
(i) Whether they are continuously evaluated. If not, they are called discrete,

either asynchronous or synchronous. In the latter case, a sampling delay must
be provided;

(ii) Whether there is a latency for the evaluation of inputs. A block without
latency is called immediate and a non zero latency is either positive or
infinitesimal, where the output value at time t only depends on the inputs
over [tinit, t[ (which is the case for integration);

(iii) Whether the output value depends on threshold crossing by an input signal,
called critical input and denoted by ic. In this case, the threshold values (vi)i∈I
must be specified, as a countable increasing sequence without accumulation
points. Such blocks are called threshold blocks.

Definition 35 (Block type)
A block type is a tuple BT = (n,m, (opi)1≤i≤n, bc, bl, bi, bs,Param) where:
• n and m are the numbers of output and input signals respectively;
• (opi)1≤i≤n is a tuple of operators, one for each output signal;
• bc is a boolean indicating if the block is discrete or continuous;
• bl ∈ {imm, inf, pos} indicates if the block is immediate, with an infinitesimal

or a positive latency;
• bs is a boolean indicating if the block is a threshold block;
• Param is a set of additional parameters depending on the block type, including

a sampling delay δ for discrete synchronous blocks and a value r > 0 for
blocks with a positive latency.

A generic block type over a set G is a family (BTg)g∈G of block types.

For instance, the generic block type Add can be defined with (Addi)i∈N where i is
the arity.

Example 21. We illustrate the definition of block type with standard examples:
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1
s
v0

i

(a): Integrator

>0
i1
ic
i2

(b): Switch

1
z
v0

i

(c): Unit Delay

Figure 3.1: Three classical block types

The Integrator block (Figure 3.1(a)) computes the integral of its input: op(i)(t) =
v0 +

∫ t
tinit

i(τ)dτ where v0 ∈ Param is the single parameter. It is a continuous
block (bc = >) with an infinitesimal latency (bl = inf), but not a threshold block
(bs = ⊥).
The Switch block (Figure 3.1(b)) is a threshold block (over its input ic) with
exactly one discontinuity point. Its operator is defined by: op(i1, ic, i2)(t) =
if ic(t)� v then i1(t) else i2(t) where the comparison operator � and the threshold
value v are the additional parameters. It is a continuous and immediate block. On
the figure, � is > and v = 0.
The Unit Delay block (Figure 3.1(c)) samples its input every δ, with a δ latency.
It is a discrete block with initial value v0 as additional parameter.

3.1.3 Block list

We now give a more extensive description of the set of blocks considered in this
work.

a) Blocks without inputs

k

(a): Constant (b): Sine Wave

Figure 3.2: Blocks without inputs

Block Constant is a continuous immediate block with one parameter k, its
value. Its operator is defined by op1()(t) = k.

Block Sine Wave is a continuous immediate block with four parameters: A is
the amplitude of the Sine Wave, f the frequency, K the phase and b the bias. Its
operator is defined by op1()(t) = A sin( tf +K) + b.



3.1. SYNTAX 59

b) Immediate blocks

+
+

i1
i2

(a): Add

×
×

i1
i2

(b): Product

Figure 3.3: Immediate blocks

Block Add (Figure 3.3(a)) is an immediate block adding its two inputs:
op1(i1, i2)(t) = i1(t) + i2(t). It corresponds to the instance Add2 of the generic
block type Add introduced earlier.

This generic block type can be extended to (Add)sign where sign is a tuple of
signs in {+,−}. For this new generic block type, the operator will be defined by
op1((ik)1≤k≤m)(t) = ∑m

k=1 signk · ik(t).
Block Product (Figure 3.3(b)) is an immediate block that computes the product

of its two inputs: op1(i1, i2)(t) = i1(t)× i2(t). It can be extended in a similar way
to Add.

c) Sampling blocks

z-1i1

(a): Delay

1
zi1

(b): Unit Delay

Figure 3.4: Sampling blocks

Block Delay is a synchronous discrete block, with three parameters: the
sampling delay δ, the delay length n and the initial value v0. It samples and
delays its input signal and its behaviour is represented by the operator op1(i1)(t) =
i1(tinit + b t−tinit

δ
− ncδ). This block usually has a positive latency, unless n = 0 in

which case it is immediate.
BlockUnit Delay is particular case of the Delay block, where the delay length is

fixed to n = 1. Hence, the operator is defined by op1(i1)(t) = i1(tinit +b t−tinit
δ
−1cδ).

d) Continuous blocks

i1

(a): Transport Delay

1
si1

(b): Integrator

Figure 3.5: Continuous blocks
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Block Transport Delay is a continuous block with positive latency. It has
two parameters: the time delay r and the initial value v0. It applies a latency of r
to its input signal. Its operator is defined by:

op(i1)(t) =
{
v0 if t− tinit < r
i(t− r) otherwise.

Block Integrator is a continous block with infinitesimal latency. It has one
parameter: the initial value v0. Its operator is op(i1)(t) = v0 +

∫ t
tinit

i1(τ)dτ .

e) Threshold blocks

>0
i1
ic
i2

(a): Switch

i

(b): Relay

i

(c): Floor

Figure 3.6: Threshold blocks

Block Switch is an immediate continuous block with two parameters � ∈ {>,≥}
and v ∈ R (with � => and v = 0 on Figure 3.6(a)). It compares the value of the
critical input ic with v according to the chosen comparison �, then returns the value
of i1 or i2 accordingly. Its operator is op(i1, ic, i2)(t) = if ic(t)�v then i1(t) else i2(t).

More generally, we define a generic block type SwitchTp1,Tp2 with Tp1 the type
of the input signals i1, i2 and the output signal, and Tp2 the type of the conditional
input. If the output type Tp1 is a boolean type, then the block is an asynchronous
discrete block.

Block Relay (Figure 3.6(b)) is an immediate asynchronous discrete block with
four parameters: von, voff , son, and soff . It represents a bang-bang controller which
outputs von when it is activated and voff otherwise. It has one input and one output
and its current state can be viewed as an internal signal. Its unique operator is
defined as follow:

op(i)(t) =


von if i(t) > son
voff if i(t) < soff

op(i)(t−) if t > tinit
voff otherwise.

Block Floor (Figure 3.6(c)) is an immediate asynchronous discrete block without
parameter. It represents the exact floor function with the countable set Z of
threshold points, with:

op(i)(t) = n if n ≤ i(t) < n+ 1.
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f) (Stateflow) Chart

Figure 3.7: Block Chart

A (Stateflow) Chart is a discrete asynchronous block describing a deterministic
state machine, where transitions are equipped with guards and behaviours are
triggered by events. An event is defined by an input signal and an activation mode:

Definition 36. An event e is a pair (x, tr) composed of a boolean input signal
x = src(e) and a trigger type tr = trig(e) ∈ {↑, ↓}. We denote by E the set of
events.

An event operates as a block with the exception that its output is not a signal
as it does not fulfill the right-continuity condition.

Definition 37. The semantics of an event e is the mapping JeK : T→ B defined
by: JeK(t) = ¬ src(e)(t−)∧src(e)(t) if trig(e) =↑ and JeK(t) = src(e)(t−)∧¬ src(e)(t)
if trig(e) =↓.

An activation of E is an element b = (be)e∈E of BE. Anticipating on the
definition of Chart activation times for a more intuitive point of view, the meaning
of be is that it holds at time t if JeK(t).

Signal

Event

Figure 3.8: A signal and its ↑ event

The input and output signals of a Chart are considered as variables of the state
machine, respectively denoted by XI and XO. We write X = XI ]XO for the set
of variables and type(X) = ∏

x∈X type(x). A valuation is an element v of type(X),
also written as a tuple v = (v(x))x∈X .

In order to specify transitions, we need a syntax to define their guards:

Definition 38. For the set X of variables and the set E of events, the set G(X,E)
of guards is defined by the following grammar:

ag ::= F | x ./ c | x ./ x | τ
g ::= ag | g ∧ g | g ∨ g

where F ⊆ E is a subset of events, τ ∈ Q+ represents a time constraint, x ∈
X, ./ ∈ {<,≤,=,≥, >, 6=}.
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Variable updates are generally specified by MATLAB code. Therefore, in order
to avoid ad hoc notations, we define them in a semantical way. An update modifies
the values of output variables according to the current values of all variables.

Definition 39. An update is a mapping a : type(X)→ type(X) such that for every
x ∈ XI : a(v)(x) = v(x). The set of updates is denoted by Up(X).

We now have all the ingredients necessary to define a Chart:
Definition 40 ((Stateflow) Chart)

A Chart is a tuple S = (Q, q0, X,E,∆,Pri, init) where:
• Q is a finite set of states and q0 ∈ Q is the initial state;
• X = XI ] XO is a finite set of variables composed of a set XI of input

variables and a set XO of output variables;
• E is a finite set of events;
• ∆ ⊆ Q× G(X,E)× Up(X)×Q is the transition function;
• Pri : ∆→ N is an injective priority function;
• init ∈ Up(X) is the initial action.

A transition δ = (q1, g, a, q2) ∈ ∆ is written q1
g,a−→ q2.

Example 22.

q1 q2

e, y ← x

2.7, y ← 0

y ← 0

i i′

e e′

x y

Figure 3.9: A Chart

A Stateflow Chart is depicted in Figure 3.9. It has two states Q = {q1, q2}, two
variables X = {x, y}, two events E = {e, e′} with trig(e) =↑ and trig(e′) =↓, and
an initial action y ← 0. For this Stateflow Chart, no priority function is required
as there is only one possible transition at each state. Finally, while event e′ is not
linked to any transition, it can be used to activate the Stateflow Chart.

In order to evaluate guards and updates, we need the notion of environment.
An environment is composed of a valuation for every signal, an activation condition
and the time elapsed since the last state change:
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Definition 41. An environment of a Chart S is a tuple env = (v, b, d) where v is
a valuation, b an activation and d a duration. A configuration of a Chart is a pair
(q, env) where q is a state of S and env an environment.

Note that q and d are stored as internal signals of the Chart block.

Definition 42 (Evaluation of a guard). Given an environment env = (v, b, d) and
a guard g, we define env |= g inductively by:
• env |= F if ∃e ∈ F : be;
• env |= x ./ c if v(x) ./ c;
• env |= x ./ y if v(x) ./ v(y);
• env |= τ iff d ≥ τ ;
• env |= g1 ∧ g2 iff env |= g1 and env |= g2;
• env |= g1 ∨ g2 iff env |= g1 or env |= g2.

Definition 43 (Evaluation of an update). Let a ∈ Up(X) and env = (v, b, d). We
define: a(env) = (v′, b, 0) where ∀x ∈ X : v′(x) = a(v)(x).

Example 23. In the Chart shown in Figure 3.9, the update function defined by
the transition from q1 to q2 is a : type(x)× type(y)→ type(x)× type(y) such that
a((α, β)) = (α, α). Note that if a variable is not specified on the transition, its
value is unchanged.

Definition 44. A transition δ = q1
g,a−→ q2 ∈ ∆ is enabled in a configuration

(q1, env) if env |= g. The configuration reached by firing δ is (q2, a(env)). The
global transition is written (q1, env) δ−→ (q2, a(env)).
We have (q, env) δ=⇒ (q′, env′) if:
• (q, env) δ−→ (q′, env′);
• there is no δ′ ∈ ∆ such that Pri(δ′) < Pri(δ) enabled in (q, env).
We define ⇒= ∪δ∈∆

δ=⇒ and ⇒∗ the transitive reflexive closure of ⇒.

We now explain how, on activation, a Chart block updates its output and
internal signals. We adopt here the maximal step semantics meaning that all
possible transitions are fired to obtain the next configuration. We assume here that
every loop between states contains either at least one time constraint or exclusive
conditions on input signals.

Definition 45. We define (q, env) max==⇒ (q′, env′) if and only if (q, env)⇒∗ (q′, env′)
and there is no enabled transition from (q′, env′). The resulting configuration
(q′, env′) is denoted by SuccMax((q, env)).

Let (q′, env′) = SuccMax((q, env)) with env′ = (v′, b′, d′). We write:
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• q′ = SuccMaxst(q, env);
• d′ = SuccMaxdur(q, env);
• v′(x) = SuccMaxx(q, env) for all x ∈ XO.

In order to completely specify the semantics of a Chart, we introduce the
sequence (ti)i≥0 of activation times containing (in increasing order) the initial time
and the times where at least one event is activated.

The time sequence can be determined from the specification of the input signals,
as illustrated by the following example:

Example 24.

e1 e2

i1 i2

(a): Stateflow block

i1

e1

i2

e2

tinit t1 t2 t3 tend
(b): Signals and events

Figure 3.10: Sequence of activation times

The event signals e1 and e2 in Figure 3.10 are computed respectively from input
signals i1 and i2. The sequence of activation times, in this example, is (tinit, t1, t2, t3).

From the time sequence (ti)i≥0, the operator of the Chart provides the corre-
sponding sequence of configurations (qi, (vi, bi, di))i≥0. Given (qi, (vi, bi, di)) at time
ti, the configuration at time ti+1 is defined as follows:

• First, the configuration at t−i+1 is built without changing the inputs:
(qi, (vi, bi, di + ti+1 − ti))

• Then, the environment for ti+1 is obtained by copying output signals and updating
the valuation of inputs signals alongside with their events:
(qi, (v′i, bi+1, di + ti+1 − ti))

• This finally yields the configuration:
(qi+1, (vi+1, bi+1, di+1)) = SuccMax((qi, (v′i, bi+1, (di + ti+1 − ti))))

Note that we only have considered a subset of the capabilities of Stateflow
Charts, which includes their main features. For instance, we do not consider nested
Stateflow Charts.

g) Summary

We give a summary of blocks in alphabetical order:
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+
+ 1 z-k

Add Constant Chart Delay Floor
p.59 p.58 p.61–64 p.59 p.60

1
s

×
×

>0

Integrator Product Relay Sine Wave Switch
p.60 p.59 p.60 p.58 p.60

1
z

Transport Delay Unit Delay
p.60 p.59

3.1.4 SK-models
An SK -model defines an architecture where blocks are instances of block types
with their parameter values.
Definition 46 (SK-Model)

An SK-modelM = (B, L) consists of:
(1) A set B of blocks, defined by their respective type and parameter values.

We denote by 〈B, o〉 an output o of block B, and 〈i, B〉 an input i of B.
(2) A set L of links of the form (〈B′, o〉, 〈i, B〉) satisfying: for any input 〈i, B〉,

there is exactly one output 〈B′, o〉 such that (〈B′, o〉, 〈i, B〉) ∈ L.

Example 25. An example of SK -model is shown on Figure 3.11. It describes a
hybrid system with two Integrator blocks and a threshold block. This toy example
already requires complex evaluation since even without block B1 it cannot be
directly written as a differential equation due to block B3 which features a positive
latency.

>0

B1

1
B5

1
s

B2
init2 = 0

B3
r3 = 1

1
s

B4
init4 = 0

ẏ y ż z

Figure 3.11: An SK -model

In this figure (and later on) we use intuitive abbreviations: init2 is the initial value
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of block B2, r3 the latency of block B3 and init4 the initial value of block B4.

Simulink models have an underlying graph representation which has a semantic
interest.

Definition 47
The graph GM of the SK-modelM = (B, L) is a labelled directed (multi-)graph
defined by:
• the set B of nodes
• for every link (〈B′, o〉, 〈i, B〉) ∈ L an edge from B′ to B labelled by (o, i).

Example 26. The graph of the SK -model from Figure 3.11 is given in Figure 3.12:

B1 B2 B3 B4

B5

(1, 1) (1, 1) (1, 1)

(1, 1)

(1, 1)

(1, 2)

Figure 3.12: Graph of the SK -model of Figure 3.11

Anticipating on section 3.2, we informally define a trajectory of an SK -model
M as a vector ~w of values for all output signals over T.

The application of block operators in order to obtain a trajectory requires tempo-
ral dependency constraints between blocks and more specifically between immediate
blocks. The following definition allows us to identify incorrect dependencies:

Definition 48
An immediate cycle of an SK-modelM is a cycle in GM along immediate blocks.
An SK-model is correct if it does not contain any immediate cycle.

Example 27. We illustrate the notions above with the SK -model shown in
Figure 3.13(a), which contains an immediate cycle with immediate block B2 linked
to itself. It would represent the equation x(t) = x(t) + 1 for all t ∈ T, which is
impossible.
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1
B1

+
+
B2

(a): An SK -model with an
immediate cycle

1
B1

+
+
B2

1
s

B3

xẋ

(b): A correct SK -model

Figure 3.13: Illustrating the correctness of SK -models

In the SK -model shown in Figure 3.13(b), an Integrator block has been added to
break the immediate loop. With this addition, it now represents the differential
equation ẋ = x+ 1.

As shown in the next proposition, the correctness property is easily decided.

Proposition 5. SK-model correctness is decidable in linear time.

Proof : It is done with a topological sort on its graph restricted to immediate blocks.

The decision procedure could also use a depth-first search algorithm but the
topological sort is used later (definition 54) in the notion of block ordering. Like in
Simulink, from now on, we only consider correct models.

3.2 Exact semantics

Since an SK -model represents a deterministic hybrid system, its semantics should be
a unique trajectory. It should be clear that such a semantics cannot be operational
since the trajectory is evaluated over an interval in R. Moreover, even with discrete
sampling points, the possible presence of an Integrator block forbids the exact
computation of these values. Furthermore, due to the general form of implicit
differential equations, there is no guarantee that a trajectory exists.

Principle. The trajectory of an SK -model over its simulation interval T =
[tinit, tend], if it exists, can be obtained informally as follows. The interval [tinit, tend]
is split into a finite sequence of contiguous subintervals. The intermediate in-
terval bounds correspond to either threshold crossing or discrete block sampling.
Within each interval, the trajectory is the solution of a differential equation system
depending on the signal values obtained until then.
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3.2.1 Differential equations of an SK-model

In this section, we first define the backward graph of a block in an SK -model.
We also define the notions of mode (for threshold blocks) and history (for blocks
with latency). We use these definitions to explain how to obtain the differential
equations that represent the behaviour of the SK -model.

Example 28. Using Add, Product and Integrator blocks, it is easy to represent
polynomial differential equations systems by SK -models. It requires exactly as
many Integrator block as variables in the system.
For instance the system {ẋ = x2 + xy, ẏ = xyz, ż = y2} might be described as
shown in Figure 3.14:

1
s

1
s

1
s

x

y

z

+
+

ẋ×
×
×
×

×
×
×

ẏ

×
×

ż

Figure 3.14: A polynomial differential equation system encoded into a SK -model

To specify the differential equation of an Integrator block B, a backward
exploration of GM is first performed from a block, denoted by B−, for which one
of the outputs, denoted by o−, is connected to the input of B. This exploration
stops when meeting a non-immediate block. Subgraphs obtained by backward
explorations are defined as follows:
Definition 49 (Backward graph)

LetM be an SK-model. The backward graph GB of a block B is a directed
acyclic graph of root B, defined inductively by:
• if B is a non-immediate block, then GB is the block B without any edge;
• otherwise, let B1, . . . , Bm be the blocks with outputs linked to input signals

of B; then GB is obtained by adding B and the links from B1, . . . , Bm to B
to ∪mi=1GBi

.

Example 29. For the SK -model of Figure 3.11, the backward graphs of blocks
B1 and B3, connected to Integrator blocks B2 and B4 respectively, are given below:
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>0

B1

1
B5

1
s

B4

z ẏ

(a): Backward graph of block B1

B3

ż

(b): Backward graph of block B3

Figure 3.14: Some backward graphs of the model of Figure 3.11

The specification of differential equations also depends on the mode of threshold
blocks. We denote by Th(M) the set of threshold blocks ofM.
Definition 50 (Mode)

Given a threshold block with threshold values {vi}i∈I , these discontinuities
define a partition of R into contiguous intervals. A mode ofM is a mapping
associating an interval with each block in Th(M).

To complete the specification of the differential equation system, we still have to
define which functions should be substituted for each non-immediate block. There
are three types of non-immediate blocks B to be considered:

• B is a block without inputs. In this case, the function associated with each
output of B is substituted in the differential equation;

• B is an integration block. In this case, the integration variable associated with
the output of B is substituted in the differential equation;

• B is a positive latency block. In this case, the substituted function should be
given by an external mechanism, which requires the following definition.
Let Lat(M) be the set of positive latency blocks ofM.

Definition 51 (History). A history of M is a mapping associating a function
h(B,o) with each output o of a block B of Lat(M).

We can now define the differential equation system obtained once a mode and
a history are fixed.
Definition 52 (Differential equations of a model)

Let m be a mode, and h an history. The differential equation associated with
an integration block B, for which the variable is denoted by xB, is obtained
by associating with each output o of each block B′ of GB− an expression yB′,o
defined inductively over the blocks of GB− following the reverse topological
order:

• if B′ is a block without input, then yB′,o = opB′,o();
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• if B′ is an integration block, then yB′,o = xB′ ;
• if B′ is a positive latency block, then yB′,o = h(B′,o);
• if B′ is an immediate block with inputs (B1, o1), . . . , (Bm, om) then
yB′,o = opB′,o(yB1,o1 , . . . , yBm,om).

The differential equation is then defined by ẋB = yB−,o−.

Example 30.

1
s

init = 0

B1

-1
B2

1
s

init = 1

B3
ẋ2 ẋ3ẋ1

Figure 3.15: A model for a sinusoidal function

For the model depicted in Figure 3.15, the equations are ẋ1 = x3, ẋ3 = −x1, which
lead to the characteristic equation of a sinusoidal function ẍ1 = −x1.

Example 31.

1
s

ẋ

Figure 3.16: Another model for a sinusoidal function

In the model depicted in Figure 3.16, the equation is ẋ(t) = A sin( tf + K) + b.
Observe that here the time t appears explicitely.

Example 32. Recall the SK -model of Figure 3.11, for which the necessary
backward graphs were given in Figure 3.14. For this model, the equations are
ż = h(3), the output of block B3, and either ẏ = 1 if mode = {]−∞, 0[} or ẏ = z
if mode = {[0,+∞[}.

3.2.2 Interval Partitioning
Several factors may impact the partition of the simulation interval T = [tinit, tend]:

• Sampling blocks modify their output instantly at each sampling step, hence
creating a discontinuity which requires splitting the simulation interval at their
sampling times;

• Positive latency blocks signals must be known during subinterval where differential
equations are fixed. Hence the length of a subinterval cannot be greater than
the minimal positive latency.
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• Signals on critical input of threshold blocks should satisfy the mode specified by
the differential equation to solve. A new mode corresponds to a new splitting
point of the simulation interval.
We introduce the static next step function nexts in order to deal with the two

first factors, as well as δmax, a bound on the length of the subintervals, which
corresponds to the delay specified by an SK-model. Given t the lower bound of
a subinterval, nexts(t) gives the (maximal) upper bound of the subinterval that
satisfies the first two conditions above.
Definition 53 (Static Next Step)

LetM be a SK-model, let ∆ be the set of its sampling steps and let R be the
set of its positive latencies. We set δlat = min(δmax,min(R)), and we define the
static next step value nexts(t) for time t < tend by:

δsamp(t) = min{pδ | δ ∈ ∆, p ∈ N, pδ > t}
nexts(t) = min(δsamp(t), t+ δlat, tend)

When the interval changes, we need to reevaluate the output signals of some of
the sampling blocks. This requires an order for the evaluation of blocks, which is
also needed to evaluate signals which are not output of an Integrator block after
differential equations have been solved.
Definition 54 (Block Ordering)

The block ordering BO of a (correct) SK-model M is a total order which
extends the following order on blocks:

1. blocks without input;
2. blocks with positive latency, by increasing latency;
3. blocks with infinitesimal latency;
4. immediate blocks in topological order.

3.2.3 Trajectories
We now give detailed explanations about trajectories, beginning with conditions
under which a trajectory exists for an SK -model.
Definition 55 (Trajectory)

The vector ~w is a trajectory of the SK-modelM over T = [tinit, tend] if there
exists (i) a sequence (ti)i∈J0,NK with t0 = tinit and tN = tend and for each i:
ti+1 ≤ minτ>ti (τ | ∃j ≤ i, r ∈ R : τ = tj + r), (ii) a minimal sampling delay
εT > 0, which will be a lower bound on the length of sub-intervals, and (iii) a
sequence (mi, hi)i∈J0,N−1K of modes and histories, such that:
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0. The initial mode m0 and history h0 are those of the initial values of the
model. Moreover, for 0 < i < N , hi on [ti, ti+1[ agrees with ~w on [t0, ti[.

1. For all i < N , the differential equation system ~̇x(t) = Fmi,hi
(t, ~x(t))

admits a solution on the interval [ti, ti+1 +εT] which coincides with ~w on [ti, ti+1[
and is consistent with mi on ]ti, ti+1[. The vector ~w agrees with the operations
of the remaining blocks.

2. For all 0 ≤ i < N − 1, ~w(ti+1) corresponds to the application to ~w(t−i+1)
of the operators of active discrete blocks (i.e. such that ti+1 is a sampling
time). The solution of ~̇x(t) = Fmi,hi+1(t, ~x(t)) on [ti+1, ti+1 + εT] is consistent
with mi+1.

In this definition, we use the sampling delay εT to deal with mode changes.
Another approach, described in [21], uses non-standard analysis which implies
handling infinitesimals.

Example 33. Returning to the example of Figure 3.11, the history is h(3)
1 (t) =

y(t− 1) = t− 1 on [1, 2], and the mode m(1)
1 =]0,+∞[ must agree with the value

of z at time 1 + εT. Hence with t2 = 2, the differential equations are ż(t) = t− 1
and ẏ = z, which yields z(t) = (t− 1)2/2 and y(t) = (t− 1)3/6 + 1.

In some cases, there is no trajectory:

Example 34. The differential equation ẋ = 1 + x2 with x(0) = 0, easily
represented with a Simulink model, has the unique maximal solution tan(x) over
]− π

2 ,
π
2 [. Hence, there is no trajectory over any interval strictly containing ]− π

2 ,
π
2 [.

Unicity of a trajectory. With suitable hypotheses on the operators, we prove
that if a trajectory exists, it is unique. Unfortunately, as is often the case for hybrid
systems, the existence of a trajectory is an undecidable problem.

This semantic looks like it is non-deterministic as it seems to depend on how
the interval is splitted, the value of εT and the solutions of the succesive differential
equations. However, with the hypothesis made on operators (which are piecewise
smooth), we have:
Proposition 6

An SK-model has at most one trajectory.

The proof of this proposition is based on the following theorem ([26] theorem
1.8.2 (page 121)):

Theorem 7. Let f : (R×R)→ R be a locally Lipschitz function with respect to
its second variable and let I be an interval of R. If there are two exact solutions ϕ1
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and ϕ2 : I → R of the differential equation ẋ = f(t, x), and if they are equal at a
point t0 ∈ I, then ϕ1 and ϕ2 are equal into the whole interval I.

A trajectory is defined by several differential equations, for which we need the
local-Lipschitz condition to hold:
Lemma 8

Let ~w be a trajectory with its sequences (ti), (mi) and (hi), then for every
i ∈ J0, N − 1K: Fmi,hi

is locally Lipschitz with respect to the second variable.

Proof : From definition 52 we remark that all the intermediate functions (including
the history functions) are C∞ since they are defined inductively by solutions
of previous differential equations, except in the initialisation where the history
functions are constants and for blocks without input.

Then, the derivative of the solutions are bounded and Fmi,hi
are locally

Lipschitz with respect to the second variable.

Proof of proposition 6 : Let us consider two trajectories ~w and ~w′ of the SK -
model, with (ti)i∈J0,NK and (t′i)i∈J0,N ′K the two sequences characterising the un-
derlying time interval partitions and εT, ε′T the respective minimal sampling
delays. We define (ui)i∈J0,MK as the time sequence obtained by merging these
sequences with u0 = tinit = t0 = t′0. Note that (ui) still satisfies for each i:
ui+1 ≤ minτ>ui (τ | ∃j ≤ i, r ∈ R : τ = uj + r). We denote by (mi, hi)i∈J0,M−1K
and (m′i, h′i)i∈J0,M−1K the modes and histories over the intervals [ui, ui+1[ induced
by the two original trajectories.

We prove by induction that, for all i ∈ J0,M − 1K, mi = m′i, h′i = hi, and
~w(ui) = ~w′(ui).

Initialisation. By definition, as they are defined using the initial values of the
model, we have m0 = m′0, h′0 = h0 and, ~w(u0) = ~w′(u0).

Induction. Let k ∈ J1,M − 1K. Using the induction hypothesis, we have
mk−1 = m′k−1 and h′k−1 = hk−1 and ~w(uk−1) = ~w′(uk−1). Thus, the differential
equation ~̇x(t) = Fmk−1,hk−1(t, ~x) is the same for both trajectories over [uk−1, uk[,
hence, using lemma 8 and theorem 7, those trajectories coincide over this interval.
This implies that hk = h′k and that the limits ~w(u−k ) = ~w′(u−k ). The values ~w(uk)
and ~w′(uk) are defined by application of the operator of active discrete blocks,
hence they are equal. Let ε = min(εT, ε′T). Since the modes mk and m′k are
determined using the solution of ~̇x = Fmk−1,hk

(t, ~x) over [uk−1, uk + ε], they are
equal. Therefore, we have: hk = h′k, mk = m′k and ~w(uk) = ~w(uk).

We have shown that for every i ∈ J0,M − 1K, the trajectories are equal
over [ui, ui+1[. The trajectories are thus equal over [tinit, tend[. We also have
~w(uM ) = ~w′(uM ) using the same argument as in the recursion part of the proof.
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Thus, the two trajectories ~w and ~w′ are equal on the whole interval [tinit, tend]
and unicity holds.

Failure cases. There are several cases where a trajectory does not exist:
• as seen above, if the model contains a differential equation without solution over

its time interval;
• if the solution violates the mode constraints related to some threshold block (see

example 35);
• or if there are an infinite number of discontinuities (see the model Figure 3.18,

and proposition 10).

Example 35.

1

−1
1
s

init = 0

>1
yẏ

Figure 3.17: A model for which constraint at t = 1 cannot be solved

Let T = [0, 2]; we have t0 = 0. The mode at t0 is mode0 = {]−∞, 1]}.
The differential equation corresponding to that mode is ẏ = 1. We choose t1 = 1
based on this differential equation and the condition. The solution y(t) = t satisfies
this mode for ]0, 1[; we can easily deduce the output values of each blocks on [0, 1[.
On [1, 1 + εT[, y(t) = t is still a solution of the differential equation ẏ(t) = 1.
However, for any chosen value of t2, this solution does not satisfy mode {]−∞, 1]}
over ]1, t2[. The model semantics is fail over [0, 2].
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Figure 3.18: A model with an infinite number of discontinuities over [0, 1]
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Figure 3.19: The (fast) increasing loop

Let us consider the Simulink model shown Figure 3.18 with, for block B1,
son = 1, soff = 0, von = −1, voff = 1.

Seeing as B1 always output 1 or −1 and B4 is the absolute value of the output of
B1 multiplied by B7 (which is always positive), computing the value of B7 requires
to study the behaviour of the mode shown Figure 3.19.
Lemma 9

LetM be the model shown Figure 3.18, and let N ∈ N. Let tk = 1− 1
2k for all

k ∈ [0, N [. Then,
a(t) = (k + 1) + 2k+1(t− tk)
b(t) = k + 1
c(t) = 2k+1

Proof : We proceed by induction. Let εT = 1
2N+2

Initially (at t0 = tinit = 0) we have a(t0) = 1 and by direct implication
b(t0) = 1 and c(t0) = 2 = 21. Over [0, 1

2 [ a(t) = 1 + 2t, b(t) = 1 and c(t) = 1.
There is no crossing of the thresholds of the block B6. However at t1 = 1

2 ,
a(t1) = 2 corresponds to some crossing of B6. The next step of the solution stays
consistent over [1

2 ,
1
2 + εT] with the mode of B6. Also, this means that a(t1) = 2,

b(t1) = 2, and c(t1) = 22.

We assume the proposition true for k ∈ [0, N − 1[. In that case, a(tk+1) =
k + 2, b(tk+1) = k + 2 and c(tk+1) = 2k+2. For any t ∈ [tk+1, tk+2[ we have
a(t) = k + 2 + 2k+2(t − tk+1), which implies b(t) = k + 2 and c(t) = 2k+2.
There is no crossing over this interval of the threshold of the block B6. At tk+2,
a(tk+2) = k+3 and we have directly b(tk+2) = k+3 and c(tk+2) = 2k+3. Similarly,
the next step of the solution stays consistent over [tk+2, tk+2 + εT]. Hence, the
proposition is true for k + 1.

Finally, the input of B5 is the absolute value of the input of block B3. However,
the input of B3 changes signs whenever B3 reaches 1 (with increasing values) or 0
(with decreasing values). Hence,
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Proposition 10
For all k ∈ N : over [tk, tk+1[:

x(t) = (k mod 2) + (1− 2(k mod 2))2k+1(t− tk)

Note that there is an infinite number of discontinuities from the threshold
crossings of blocks B6 and B1, hence the model does not have an exact trajectory
over [0, 1]. A trajectory would start as shown on Figure 3.20 if it was calculated
over [0, v] with v ∈ [0, 1[.

1

1

1
2

3
4

7
8

15
16

Figure 3.20: The start of a unfinished trajectory of model Figure 3.18

We used a discrete controller operating in a continuous environment to define the
exact semantics of SK -models. This controller is limited by its reaction capacities,
that are implicitly specified by εT. Hence, when going from an interval of the
simulation to another, the controller needs to keep a mode to decide whether it
applies to the next differential equation.

It is well-known that questions on hybrid systems trajectories are usually
undecidable (e.g. threshold crossing). Here, even the problem of existence of a
trajectory over a finite interval is undecidable.
Proposition 11

Trajectory existence problem for SK-models is undecidable.

Proof : The proof is a reduction of the halting problem for two-counter machines
(which is undecidable [56]) to the trajectory existence problem for SK -models.

Recall that a two-counter machine consists of a finite sequence of labelled
instructions, which handle two counters c and d and end with a special instruction
with label Halt. The other instructions have one of the two forms below with
x ∈ {c, d} representing one of the two counters:

1. ` : x := x+ 1; goto `′
2. ` : if x = 0 then goto `′ elsex := x− 1 goto `′′

Since a (long) sequence instructions of the first type can set the counters at any
initial values, we assume that the counters have initial value zero. The behaviour
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of such a machine is described by a (possibly infinite) sequence of configurations:
< `0, 0, 0 >< `1, c1, d1 > · · · < `i, ci, di > · · · where ci and di are the respective
values of counters c and d, and `i the label of the current instruction after the ith
instruction.

The reduction is done by encoding a two-counter machine as a Stateflow
Chart, which will be activated by the signal x of the model shown in Figure 3.18.
Then, by adding an output to this Chart which is connected to the enabler model,
we ensure that the final model has a trajectory if, and only if, the two-counter
machine halts.
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×
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s

B3 init = 0

|i|
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B5 init = 1 B6

2i

B7

Figure 3.21: The resulting model

The model built by this operation is depicted in Figure 3.21. The output
of block B6 is also connected to the Chart to ensure that only one step of the
two-counter machine is computed at each activation.

The Stateflow Chart is constructed as follows:
• for each instruction label `, the Chart has a corresponding state state(`);
• for each counter c and d, a variable named similarly is chosen;
• two additional variables are added: s indicating whether the Chart reached the

Halt instruction (which is initialised to 1 and is an output of the Chart) and n
a variable that will be used to prevent the Chart from doing more than one
step at each activation;

• two inputs, e being the event input (which is the output of block B3 above) and
m the output of the B6 block which will be used to check the current iteration;

• for each instruction ` : x := x + 1 goto `′ an arc state(`) m>n,{x←x+1;n←m}−−−−−−−−−−−−−→
state(`′);

• for each instruction ` : if x = 0 then goto `′ elsex := x − 1 goto `′′, two arcs
state(`) m>n∧x=0,n←m−−−−−−−−−−→ state(`′) and state(`) m>n,{x←x−1;n←m}−−−−−−−−−−−−−→ state(`′′);

• for each arc leading into the state state(Halt), we append s← 0 to its list of
instructions.
Now, it has been seen (proposition 10) that the block B3 generates a peak at

each 1− 1
2(2n+1) , n ∈ N. This sequence has an infinity of values in [0, 1] meaning

that the Stateflow Chart will be activated as many times as possible. When the
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ti

σ0 = nexts(ti)
σ1 = nextint(ti, σ0)

ti+1 = nextz(ti, σ1)

Figure 3.22: Searching for the next step ti+1

Chart reaches the state(Halt) state, the output B2 is forced to 0 and this stops
the output of B3 from changing further. The model Figure 3.21 has a trajectory
if, and only if, the Chart halts, which is if and only if the two-counter machine
halts. Thus, the trajectory existence problem for SK -models is undecidable.

Observe that this proof uses discrete asynchronous blocks.

3.3 Operational semantics
The exact semantics relies on solving differential equations and determining thresh-
old crossings. It is well-known that such operations are not effective. We now define
an approximate semantics that will be the base of a simulation engine for SK -
models. Moreover, it should be possible to give guarantees on the approximation
towards exact semantics.
General principle. The approximate semantics is based on the iterative con-
struction of a subinterval partition of [tinit, tend] = ⋃N−1

i=0 [ti, ti+1]. In order to control
errors induced by approximations, we again define εT as the minimal stepsize and
add an accuracy parameter εV satisfying: |x| < εV ⇒ x ' 0. The approximate
semantics will replace complete trajectories by an array mapping, for each output
o of each block B, its values WB,o[i] at each step ti, 0 ≤ i ≤ N .
Iteration step. Let t0, . . . , ti be known, as well as the values WB,o[j] for each
output o of each block B, and 0 ≤ j ≤ i. The first step is to determine ti+1. This
value is obtained by applying the next step function nexts: σ0 = nexts(ti), and
then possibly lowering this value:

1. First, by applying a variable-step integration method, such as Runge-Kutta-
Felhberg1 [39], between ti and σ0 over all Integration blocks, giving σ1 =
nextint(ti, σ0);

2. Second, by detecting the mode change of threshold blocks, by linear approxi-
mations, producing ti+1 = nextz(ti, σ1).

In both cases, it is necessary to compute the values corresponding to backwards
graphs of concerned blocks at intermediate points generated by these methods.

1also called ODE45
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Variable-step Integration in SK-models. The chosen method, ODE45, is
based on the simultaneous computation of two approximations by fourth and
fifth-order Runge-Kutta methods, as described in [39]. If the difference between
the two approximations is above εV , then the stepsize is reduced with a minimum
value of εT and the procedure repeated.

However, in order to use Runge-Kutta methods, we need to explicitly know
differential equations, while here they are implicitly specified by the SK -model.
This requires to adapt these methods, evaluating backward graph blocks to the
intermediate times of the Runge-Kutta method.
Example 36. In order to give a general idea, we show an application of the
classical fourth-order Runge-Kutta method on a simple Simulink model. This can
be adapted to any other Runge-Kutta method.
Classical fourth-order Runge-Kutta method. We consider the differential
equation ẏ = f(t, y) with initial value y0 = y(t0). The classical RK4 method of
stepsize h iteratively computes the values yn = y(t0 + nh) values:

yn+1 = yn + h

6 (k1 + 2k2 + 2k3 + k4)

where


k1 = f(tn, yn)
k2 = f(tn + h

2 , yn + h
2k1)

k3 = f(tn + h
2 , yn + h

2k2)
k4 = f(tn + h, yn + hk3)

At each step, the output signal of an Integration block is estimated using initial
value and an elapsed time multiplied by the derivative. To simplify notations, we
will symbolically denote kj = f(τj, zj) the equation corresponding to step j.
Note that this example is simplified as the block outputs never directly depends on
the current time (except for integrals) and there is no delay functions nor threshold
block.
In a Simulink model, the function represented by f results from the computation
of the backward graph of the input block of an Integrator block. We consider
the Simulink model of Figure 3.23 as an example. Initial values of B1 and B3
are respectively 1 and 0. We will simulate the model over interval [0, 10] with a
maximal stepsize 0.5. The exact semantics of output signals are cos(t) for B1, and
− cos(t) for B2 and − sin(t) for B3.

1
s

B1
init = 1

−1

B2

1
s

B3
init = 0
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Figure 3.23: A Simulink model computing an approximation of cos(t)

We compute the backward graphs for blocks B3 and B2 (inputs of B1 and B3), that
are respectively shown in figures 3.24(a) and 3.24(b). We denote kj,i the coefficient
kj associated to block Bi. Similar notations will be used for f and other blocks.

1
s

B3

(a): Backward graph of B3, in-
put of B1

1
s

B1

−1

B2

(b): Backward graph of B2, in-
put of B3

Figure 3.24: Backward graphs of the Figure 3.23 Simulink model

Using those backwards graphs, we can unwrap the definition of equations kj,i =
f(τj, zj,i). We then have kj,1 = zj,3 for block B1 and kj,3 = zj,1 for block B3. We
can then apply the RK4 method to the Simulink model.
We then describe the calculations for t0 = 0 and h = 1

2 . For the first step, we have
k1,1 = f(t0, z1,1) = W3,0 = 0. Likewise, k1,3 = f(t0, z1,3) = −W1,0 = −1.
The other steps are described in the following table:

1 k1,1 = f1(0, y0,3) = y0,3 = 0 k1,3 = f3(0, y0,1) = −y0,1 = −1
2 k2,1 = f1( 1

4 , 0 + 1
4k1,3) = 1

4k1,3 = −1
4 k2,3 = f3( 1

4 , 1 + 1
4k1,1) = −1− 1

4k1,1 = −1
3 k3,1 = f1( 1

4 , 0 + 1
4k2,3) = 0 + 1

4k2,3 = −1
4 k3,3 = f3( 1

4 , 1 + 1
4k2,1) = −1− 1

4k2,1 = −15
16

4 k4,1 = f1( 1
2 , 0 + 1

2k3,3) = 1
2k3,3 = −15

32 k4,3 = f3( 1
2 , 1 + 1

2k3,1) = −1− 1
2k3,1 = −7

8

- y1,1 = y0,1 + 1
12 (k1,1 + 2k2,1 + 2k3,1 + k4,1) y1,3 = y0,3 + 1

12 (k1,3 + 2k2,3 + 2k3,3 + k4,3)
= 1 + 1

12 (0 + −1
2 + −1

2 + −15
32 ) = 0 + 1

12 (−1− 2− 15
8 −

7
8 )

= 337
384 ' 0, 877 = −23

48 ' −0, 479

Figure 3.25: Applying RK4 method to Simulink model of Figure 3.23

Final values are approximations of cos(0.5) and − sin(0.5) exactly to 10−3.

Remark. It is possible that a threshold block changes mode between two inter-
mediate steps of the Runge-Kutta methods. As we tackle the threshold crossing
immediately after, we apply Runge-Kutta method with fixed modes (the mode of
time ti).

Threshold crossing. Let σ1 = nextint(ti, σ0). We determine if there is a mode
change between ti and σ1. In this case, we compute the minimal instant of mode
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Figure 3.26: Unsafe crossings of value v

change between all threshold blocks, by doing a linear interpolation over all critical
inputs. This linear interpolation is evaluated with a maximal precision given by εV .
Computing new values. The following step ti+1 = nextz(ti, nextint(ti, nexts(ti))
given by the procedures described above, we compute output of all blocks at this
given time in the block order. For Integration blocks, as the ODE45 method has
already given a guarantee over precision, computing their new value with RK4 is
good enough. For other blocks, we apply operators with respect to the current
mode.

Then, similarly to the exact semantics, we compute the new values at ti+1 + εT
to deduce the mode at ti+1. If a mode change occurs in ]ti+1, ti+1 + εT[ then the
result is fail.
Approximation conjecture. This operational semantics is proposed with the
aim to provide an accurate approximation of the exact semantics. This is formally
expressed as follows:
Definition 56 (Approximation)

Let ~w be the trajectory of an SK-modelM. Then, the set of valuesW produced
by the operational semantics accurately approximates ~w if, for any ε, there exist
values of εT and εV such that:

∀ti,∀k, ∀o, |Wk,o[i]− wk,o(ti)| < ε.

Such a result would require reasonable hypotheses on the model. We now propose
a semantical condition on signals, called Safe Crossing, under which we conjecture
that the result holds:
Definition 57 (Safe Crossing)

An SK-modelM satisfies the Safe Crossing condition if there exists dmin and
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α > 0 such that, for any output signal s ofM, for any threshold value v, if
s(tc) = v for some tc ∈ T, then:

1. s is continuous over the interval [tc − α, tc + α];
2. For any β ≤ α, (s(tc − β)− v)(s(tc + β)− v) < 0 (the threshold value is

effectively crossed);
3. |ds

dt
(t+c )| ≥ dmin and |ds

dt
(t−c )| ≥ dmin (the right and left derivatives of the

signal on the crossing are above the minimal value).

This condition precludes classical problematic situations like those illustrated
in Figure 3.26, where signals s1, s2 and s3 have an unsafe crossing of value v for
tc = 1, 3 and 5 respectively.

We conclude this chapter with the conjecture:
Conjecture 12

Under the Safe Crossing condition, if a trajectory ~w exists, then the operational
semantics is an accurate approximation of ~w.



CHAPTER 4
EXTENSIONS TO COSMOS

Abstract. Cosmos is a statistical model-checker for the Hybrid Automata
Stochastic Logic over high-level stochastic Petri nets. It has been developed first
during Hilal Djafri’s PhD [34]. It was improved, adding HASL support in [13], and
rare event handling in Benoît Barbot’s PhD [14]. In the first section, we describe the
former version of Cosmos. Then, we present our contributions: an improvement of
the implementation for high-level Petri nets concerning token handling, a simulator
for Simulink models, and support for multi-model simulation.
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4.1 Technical Description of Cosmos

filename.gspn

filename.lha

Code Generator

GSPN Class

LHA Class

Cosmos Simulator

Cosmos librairies

C++

Cosmos Server

bold Pre-compiled files tt Input files
it Generated C++ code boldit Generated executable

Figure 4.1: Overview of the architecture of Cosmos

Overview. Cosmos is built around three main parts:
• a Code Generator, which transforms the model files and the description of the

HASL formula into C++ code that will be included in the Simulator;
• the Simulator, which is built using a library (that we describe shortly after) and

the C++ code generated by the Code Generator;
• the Server, which runs in parallel several instances of the Simulator then aggre-

gates their results and computes the statistical evaluation, based on the chosen
statistical method.

General notations. In this chapter, code listings are used to present the data
structures and the class templates. Functions will be presented using readable
pseudo-code.

Code optimization. In the actual code, several optimization techniques are
implemented, some of them using C++ templates: in particular the curiously
recurring template pattern1 which implements static polymorphism.

We will not describe in detail the use of templates in the code, but will present
the functional aspects of the classes.

For instance, we present the two classes SPN and SKModel as fulfilling the DEDS
interface which communicates with the Simulator, as shown in Figure 4.2.

1https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern

https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern
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<<interface>>
DEDS

initialEventQueue()
fire(t: transition, b: binding,
time: real)
update(time: real, t: transition)

Simulator

SimulateOneStep(): boolean
SimulateSinglePath()
interactiveSimulation()

1

SPN
marking : stateImpl
initialEventQueue()
fire(t: transition, b: binding,
time: real)
update(time: real, t: transition)

SKModel
state : stateImpl
initialEventQueue()
fire(t: transition, b: binding,
time: real)
update(time: real, t: transition)

Figure 4.2: Relation of DEDS classes and the Simulator

4.1.1 Code Generator

In this section, we first present the Marking class used to store the current state
of a model. Then, we describe the DEDS class that will be instantiated on code
generation. We then show the version of this class used in the library for Petri
nets, reducing the number of elements generated by the Code Generator. Usually,
the generalized stochastic Petri nets are given to Cosmos in the .grml format, that
can be produced using the GreatSPN Editor2.

DEDS class. As shown in algorithms 2 and 3, the Event Queue management
is handled by a class corresponding to the DEDS interface (that we shorten to
DEDS class). To this aim, two functions will be generated by the Code Generator:
initialEventQueue which initialises the event queue at simulation start, and
update which updates the event queue after the firing of a transition. This generic
structure is currently instantiated for Petri nets and Simulink models.

The DEDS class handles the current state, stored into DEDState which contains,
in the case of Petri nets, an instance of the Marking class. This state is updated
by the fire function according to the specification of the transition. The initial
value of the state is filled through the constructor of the class.

2http://www.di.unito.it/~amparore/mc4cslta/editor.html

http://www.di.unito.it/~amparore/mc4cslta/editor.html
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P1

UNIF(0,1)

e1 P2

UNIF(0,1)

e2 P3
(a) A Petri net

1 class abstractMarkingImpl {
2 public :
3 int _PL_P1 ;
4 int _PL_P2 ;
5 int _PL_P3 ;
6 };

(b) Its Marking class

Figure 4.3: A Marking structure example

Marking class. It is used to represent a model state. For Petri nets, it contains as
many variables as there are places. The Marking class in Figure 4.3(b) corresponds
to the net in Figure 4.3(a), which has been used previously to estimate π using the
Monte-Carlo method in section 18. The abstractMarking class is an instance for
the DEDState used in class templates. The abstractMarkingImpl class is used to
define model-dependant variables and circumvent C++ limitations.

Petri Net models. In the case of a Petri Net, the update and initialEventQueue
functions are implemented as a part of the library, through SPNBase.cpp:

• the initialEventQueue iterates over all transitions, checking whether each
transition is enabled and, in that case, adding it to the event queue with a
random delay corresponding to the specified distribution (using generateEvent).

• the update function, called after the firing of transition T , shown in Algorithm 1,
updates the Event Queue with an incremental method:
– first, it checks whether transition T is still enabled, and removes or updates it

accordingly;
– then, it checks each possibly enabled transition, and add new possible events.

It uses the PossiblyEnabled vector, generated by the Code Generator, that
maps each transition t to the list of transitions t′ for which there exists a place
p with t→ p→ t′;

– then, it checks each possibly disabled transition and remove events that have
been disabled. It uses the PossiblyDisabled vector that maps each transition
t to the list of transitions t′ for which there exists a place p with p→ t and
p→ t′ and t 6= t′.

– finally, each transition for which the time distribution depends on the value
of the current marking (stored into the MarkingDependant vector) is checked
and updated accordingly.
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Example 37.

t1 P1

t2 P2 t3 P3

t4 P4

Figure 4.4: A toy Petri net

In the net shown in Figure 4.4, we have:
• PossiblyEnabled(t1) = {t3, t4};
• PossiblyEnabled(t2) = {t3};
• PossiblyEnabled(t3) = PossiblyEnabled(t4) = ∅;
• PossiblyDisabled(t1) = PossiblyDisabled(t2) = ∅;
• PossiblyDisabled(t3) = {t4};
• and PossiblyDisabled(t4) = {t3}.
In the case if t2 is fired, PossiblyEnabled(t2) is checked and tells that we need
to check if t3 is enabled. Then, we check the number of tokens of places P1 and
P2. If there is at least one token in each of these places, we know that t3 is
enabled. We then check if this transition is already in the Event Queue. If not, this
transition is added to the Event Queue (the time and weight are drawn through
generateEvent).

There is a more clever way to perform this update function with a better
incremental update where a value is associated with each transition giving the
number of conditions that are not yet satisfied. However, simulations using this
approach are only faster for ordinary Petri nets. The advantage of the chosen
algorithm here is its flexibility and, in particular, its adaptability to high-level Petri
nets.

Generating a model class. The generalized stochastic Petri nets are given to
Cosmos in the .grml format, and then transformed into a C++ code that will have
the behavior of the net. For example, the Petri net shown in Figure 4.4 would have
the fire function shown in Figure 4.5. For each transition t, this function applies
the token changes for the impacted places. Other model functions are generated
in a similar way: IsEnabled would return the result of the test associated to the
places of the transition (in this case, for t3, it would be Marking.P->_PL_P1 > 0
&& Marking.P->_PL_P2 > 0).
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Algorithm 1: Function updating the Event Queue for a Petri Net
Data: the Event Queue EQ, a Time Generator TG

1 Function update(ctime,lastTr,EQ,TG)
Input : the current time ctime, the last activated transition lastTr,

the Event Queue EQ and Time Generator TG
2 for t ∈ PossiblyEnabled(lastTr) do
3 if IsEnabled(t)) then
4 if ¬EQ.isScheduled(t) then
5 generateEvent(F ); EQ.insert(F )

6 for t ∈ PossiblyDisabled(lastTr) do
7 if ¬IsEnabled(t) then EQ.remove(t);
8 for t ∈MarkingDependant do
9 if EQ.isScheduled(t) then generateEvent(F ); EQ.replace(F ) ;

1 void SPN :: fire( TR_PL_ID t, const abstractBinding &b, REAL_TYPE time
){

2 switch (t){
3 case 0: //t1
4 Marking .P-> _PL_P1 += 1;
5 break ;
6 case 1: //t2
7 Marking .P-> _PL_P2 += 1;
8 break ;
9 case 2: //t3

10 Marking .P-> _PL_P1 -= 1;
11 Marking .P-> _PL_P2 -= 1;
12 Marking .P-> _PL_P3 += 1;
13 break ;
14 case 3: //t4
15 Marking .P-> _PL_P1 -= 1;
16 Marking .P-> _PL_P4 += 1;
17 }
18 }

Figure 4.5: The fire function of the toy Petri net
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1 class LHA {
2 public :
3 int CurrentLocation ;
4 double CurrentTime ;
5

6 vector <double > FormulaVal ;
7 vector <bool > FormulaValQual ;
8

9 protected :
10 vector <LhaEdge > Edge;
11 vector <int > EdgeCounter ;
12 set <int > InitLoc ;
13 vector <bool > FinalLoc ;
14 vector < set <int > > Out_A_Edges ;
15

16 Variables *Vars;
17 Variables * tempVars ;
18 vector <double > LinForm ;
19 vector <double > OldLinForm ;
20 vector <double > LhaFunc ;
21 vector <double > LhaFuncDefaults ;
22

23 void resetVariables ();
24 void DoElapsedTimeUpdate (double , const DEDState &);
25 double GetFlow (int , const DEDState &) const ;
26 bool CheckLocation (int ,const DEDState &) const ;
27 bool CheckEdgeContraints (int ,size_t , const abstractBinding &,

const DEDState &) const ;
28 t_interval GetEdgeEnablingTime (int ,const DEDState &) const;
29 void DoEdgeUpdates (int , const DEDState &, const abstractBinding

&);
30 void UpdateLinForm ( const DEDState &);
31 void UpdateLhaFunc ( double &);
32 void UpdateFormulaVal (const DEDState &);
33 };

Figure 4.6: A simplified version of LHA.hpp
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1 template <class DEDState >
2 class LHA_orig : public LHA <DEDState > {
3 public :
4 void copyState ( LHA_orig *); // Copy state of another LHA
5 void fireAutonomous (int ,const DEDState &);
6 virtual int synchroniseWith (size_t , const DEDState &, const

abstractBinding &);
7 virtual AutEdge GetEnabled_A_Edges (const DEDState &);
8 virtual void updateLHA ( double DeltaT , const DEDState &);
9 virtual bool isFinal ();

10 virtual void reset( const DEDState &);
11 virtual void getFinalValues (const DEDState &,vector <double >&,

vector <bool >&);
12

13 protected :
14 void fireLHA (int , const DEDState &, const abstractBinding &);
15 virtual void setInitLocation ( const DEDState &);
16 int GetEnabled_S_Edges (size_t , const DEDState &, const

abstractBinding &);
17 void resetLinForms ();
18 };

Figure 4.7: A simplified version of LHA_orig.hpp

HASL and LHA class. The LHA is also defined as a class (see Figure 4.6),
generated at runtime. It maintains informations about the global state of the
automaton, among them:

• CurrentLocation and CurrentTime are respectively an integer representing the
current node of the automaton, and a double representing the current time;

• FormulaVal is a vector of doubles containing the current value of each path
expression;

• FormulaValQual is a vector of booleans indicating if a path expression, used for
binomial distribution evaluation, is currently satisfied.

It also contains a set of protected functions, which will be used by the class
LHA_orig (described in the next paragraph) that will serve as an interface for the
Simulator. Among them:

• DoElapsedTimeUpdate updates the variables of the LHA according to the given
elapsed time and the current marking of the model;

• GetEdgeEnablingTime gets the earliest time at which an edge of the LHA will
be enabled (when its guard becomes true), by solving a linear equation system;

• DoEdgeUpdates updates the LHA variables after the firing of an edge of the
LHA, according to the current marking of the model.
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Complete LHA class. The final class for the Simulator is another class, called
LHA_orig (see Figure 4.7), that inherits from the LHA class described in the
previous paragraph. It contains mainly public functions:

• fireAutonomous firing an autonomous transition of the LHA;
• updateLHA which updates all the values of the LHA and HASL path expressions

according to an elapsed time whose value is indicated by DeltaT and to the
current state of the model;

• synchroniseWith checks if there is an enabled synchronisation edge (with
GetEnabled_S_Edge) and fires it, and returns whether there was such an edge.

Some of them rely on protected functions. Among them:
• fireLHA fires a transition of the LHA, by using the DoEdgeUpdates function to

update the LHA variables according to the current marking of the model, then
changes the current state.

• GetEnabled_S_Edge checks all LHA transitions starting from the current LHA
state and which are labelled by the model transition; for each of these transitions,
it then checks whether the guard of the destination and the edge are fulfilled, in
which cases it returns the corresponding LHA transition.

4.1.2 Simulator
We describe here the Simulator class template which handles calls for model
simulation and automaton synchronisation. The algorithms will then be presented,
followed by the Event structure used in the EventQueue class.

Simulator class. The essential functions of the header file of the simulator are
shown in Figure 4.8. As can be seen, the Simulator is a template that extends the
SimulatorBase template. This SimulatorBase template has three generic types:

• the Simulator S itself;
• the structure EQT for an Event Queue;
• and the simulated model DEDS.

It implements several functions, the essential ones are:
• SimulateOneStep which fires autonomous edges of the LHA until the next

activation time of the model, and then performs the corresponding step. It
returns whether the model has a next simulation step.

• SimulateSinglePath which simulates the model until:
1. a final state of the LHA is reached;
2. a model transition cannot be synchronised with the LHA;
3. the Event Queue is empty.

• interactiveSimulation which implements a command-line interface where the
user can control the simulation by choosing to execute exactly one step, or
execute the model for a chosen delay, or firing one of the enabled transitions.
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1 template <class S, class EQT , class DEDS >
2 class SimulatorBase : public timeGen {
3 public :
4 SimulatorBase (DEDS& N,LHA_orig < typename DEDS :: stateType >&);
5 ~ SimulatorBase ();
6 void SetBatchSize (const size_t );
7

8 DEDS &N;
9 LHA_orig < typename DEDS :: stateType > &A;

10 EQT* EQ;
11

12 bool SimulateOneStep ();
13 void SimulateSinglePath ();
14 void interactiveSimulation ();
15

16 void reset ();
17 };
18

19 template <class EQT , class DEDS >
20 class Simulator : public SimulatorBase <Simulator <EQT , DEDS >, EQT ,

DEDS >{
21 public :
22 Simulator (DEDS& deds ,LHA_orig < typename DEDS :: stateType >& lha):

SimulatorBase <Simulator ,EQT ,DEDS >(deds , lha){};
23 };

Figure 4.8: A simplified version of Simulator.hpp
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Note that unlike the model which needs a template as its structure might be quite
generic, the LHA_orig class is fully instantiated.

Simulator algorithms. The SimulateOneStep function is described by Algo-
rithm 2. This function first defines τnext the time of the next event (+∞ if there
is no such event) and stores the next event of the model into a variable E. Then,
while there is an autonomous edge of the LHA for which condition is fulfilled before
τnext, it fires it and updates the LHA variables accordingly. In the case where a
final state is reached during this loop, the simulation is accepted and the function
returns false as there are no more possible simulation steps. Once this loop is
finished, it checks whether there is a possible event in the model. If there is none,
the simulation is rejected and the function returns false. Finally, it updates the
LHA variables for their new value at τnext and fires the event E. If the transition
of event E cannot be synchronised with the LHA, it rejects the simulation and
returns false. Otherwise, the function performs the synchronisation and checks
whether the LHA has reached a final state. In that case, it accepts the simulation
and returns false. In the other case, it finally updates the Event Queue (using the
model’s update function) and returns true.

The SimulateSinglePath function is built directly using SimulateOneStep.
It is described by Algorithm 3. It first calls the initialEventQueue of the model,
initialising the Event Queue, then runs the SimulateOneStep function in a loop
as long as the simulation can progress.

The procedure for interactive simulation is also based on SimulateOneStep,
and is described by Algorithm 4. It is similar to the single path function, except
that it maintains a variable minInteractive which contains the minimum time at
which control is given back to the user. When the user has control, he may:

1. either fire a specific transition, which gives full priority to the event associated
with this transition (executed at current time, with highest priority and lowest
weight);

2. or execute a single step of the model;
3. or execute steps of the models until a given time (stored into minInteractive).
Other features are implemented into the interactive simulation, such as waiting

for a specific transition to be fired, or drawing the current Petri net state (through
Graphviz’s DOT language3).

A verbose level can also be given when running Cosmos, which is useful for
debugging. Depending on the verbose level, additional information will be provided
about the current state of the model, the Event Queue, etc. This information will
be printed by SimulateOneStep.

3see https://www.graphviz.org/doc/info/lang.html

https://www.graphviz.org/doc/info/lang.html
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Algorithm 2: The SimulateOneStep function
Data: the Event Queue EQ, the LHA A, and the model N

1 Function SimulateOneStep(EQ,A,N)
Data: An (possibly empty) event E
Output : a boolean that indicates whether the simulation can be

continued
2 E ← null; τnext ← +∞ ;
3 if EQ 6= ∅ then E ← EQ.first; τnext ← E.time ;

/* Execute all autonomous transitions that happen before
τnext */

4 while AE = A.GetEnabled_A_Edge and AE.time < τnext do
5 S.time← AE.time ;
6 A.updateV ariables(AE.time) ;
7 A.fire(AE) ;
8 if A.final then Halt with acceptance. return false. ;

/* If there is no possible event and the automata is not in
a final state, halt */

9 if E = null then Halt with rejectance. return false. ;
/* In other cases, update variables in LHA and fire

transition. */
10 A.updateV ariables(τnext); N.fire(E.Trans, τnext) ;
11 if no possible synchronisation then Halt with rejectance. return false.

;
12 A.synchronise ;
13 if A.final then Halt simulation with acceptance. return false. ;
14 N.update() // This updates the Event Queue
15 return true.

Algorithm 3: The simulateSinglePath function
Data: a Event Queue structure EQ, the LHA A, the model N
Result:

1 N.initialEventQueue(EQ,S) ;
2 cont← true ;
3 while cont do cont← simulateOneStep() ;
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Algorithm 4: The interactiveSimulation function
Data: a Event Queue structure EQ, the LHA A, the model N
Result:

1 N.initialEventQueue(EQ,S) ;
2 cont← true ;
3 minInteractive← 0 ;
4 while cont do
5 checkinput← true ;
6 while checkinput&&S.time ≥ minInteractive do
7 input← getline(cin) // Reads the last line of the (shell)

input
/* Fire a specific transition: */

8 if input.substr(0, 5).compare = ”fire ” then
9 trans← input.substr(5, input.size()− 5) ;

/* Find the id of the transition named trans: */
10 for tid = 0; tid < transLabels.size() && transLabels[tid]! =

trans; tid+ + ;
/* If there is such a transition, then force its

execution */
11 if tid < transLabels.size() then
12 if EQ.isScheduled(tid) then
13 EQ.prioritise(F ) ;
14 checkinput← false ;

/* Execute exactly one step: */
15 if input = ”step” || input = ”s” then checkinput← false ;

/* Execute simulation until a specified time: */
16 if input.substr(0, 5).compare = ”wait ” then
17 until← input.substr(5, input.size()− 5) ;
18 minInteractive← until ;

// This requires a cast from string to float (and
maybe some safety checks...)

19 cont← simulateOneStep()
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Event class. It is used to represent events of a model and consists of five variables:
• an integer transition: the identifier of the transition;
• a double time: the time at which the event will happen;
• a double priority: the priority of the event (for example, the priority of the

transition);
• a double weight: the weight of the event;
A fifth variable binding corresponds to the binding (of the variables of the transi-
tion) of the event. It is used in high-level Petri nets and its type depends on the
structure of the net (this will be explained in section 4.2).

This class also implements several functions:
• update functions setTime, setPriority, and setWeight that update the corre-

sponding variables with the parameter of each function;
• a function isPriorer which takes another event e2 as parameter and returns

true if e2 should be fired before this event (see section 1.1.3)

EventQueue class. The event queue is defined as a class (see Figure 4.9) that
maintains:

• a vector of events evtTbl which maps each possible (transition, binding) pair to
an event;

• a vector evtHeap, which is a heap of enabled (transition, bindings) pairs in the
order of priority of their events;

• and a vector evtHeapIndex which maps each possible (transition, binding) pair
to the position of the corresponding event in the heap (or −1 if the event is not
in the queue).

Note that the heap (evtHeap) refers to each event through its (transition, binding)
pair. The event is then found in the evtTbl vector. In order for the model to
update its Event Queue, several standard functions are available:

• insert which inserts a new Event in the Event Queue;
• replace which replaces the Event of the same (transition,binding) pair by a new

element, to update time or priority;
• pause and restart which allows to pause the time of an event, and reschedule

the event with the remaining time, in case of an age memory policy.
• isScheduled which checks whether there is a scheduled Event of the (transition,

binding) couple;
• remove which removes of the queue the Event corresponding to the given (tran-

sition,binding) pair.
These functions use the classical heap functions siftUp, siftDown and swapEvt
described below.
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1 class EventsQueue {
2 private :
3 vector <vector < long int >> evtHeapIndex ;
4 vector <vector < Event >> evtTbl ;
5 vector <sizeSq > evtHeap ;
6 public :
7 EventsQueue ( const std :: vector <size_t > &sizes);
8 void insert (const Event &);
9 void replace (const Event &);

10 void pause(double ,size_t , size_t );
11 bool restart (double ,size_t , size_t );
12 void remove (size_t , size_t );
13 bool isScheduled (size_t , size_t ) const;
14 Event& getEvent (size_t , size_t );
15 void reset ();
16 size_t getSize ();
17 const Event& InPosition ( size_t ) const ;
18 private :
19 void siftUp ( size_t );
20 void siftDown ( size_t );
21 void swapEvt (size_t , size_t );
22 }

Figure 4.9: A simplified version of EventQueue.hpp



98 CHAPTER 4. EXTENSIONS TO COSMOS

Event Queue Algorithms. The heap is built as a binary tree, implemented
by the functions described in this section. The vectors are initialised through the
class initialisation function: for that, it checks the number of possible bindings
for each transition. The following functions are defined to ease further defini-
tions: getLeftChildIndex(k) = 2k + 1, getRightChildIndex(k) = 2k + 2 and
getParentIndex(k) = b(k − 1)/2c. We first define the basic functions:

• swapEvt exchanges the positions of the events of nodes i and j of the heap, and
modify the vector evtHeapIndex accordingly.

• siftUp first checks if the node is the root node, in which case it does nothing.
Otherwise, it gets the parent Event and checks whether the current event (in
the ith node) has a higher priority (with respect to the isPriorer function). In
that case, it swaps both events (with swapEvt) and performs a recursive call on
the new index (basically, b(i− 1)/2c).

• siftDown first finds the highest priority child (after checking whether there are
zero, one, or two childs), then checks if the current event has a higher priority; In
that case, it swaps both events and performs a recursive call on the new index.
The following functions are then defined:

• isScheduled gets the transition and binding identifiers, checks the value in
evtHeapIndex, and returns false if the corresponding value is −1 and true
otherwise;

• InPosition simply reads the current value in evtHeapIndex;
• getEvent takes a (transition, binding) pair and returns the corresponding event

using evtTbl;
• insert inserts an event in the queue by putting it at the highest index, and then

using siftUp until stabilisation.
Using the (transition, binding) pair as an identifier prohibits the multiple (or

infinite) server policy, since in this case an additional indexing should be necessary
to distinguish between several instances of the same pair.

TimeGen class. This class handles the generation of the delays for newly-enabled
events, according to the distribution associated with their transition. It implements
a function called GenerateTime which uses the library Boost and the Mersenne
Twister random number generator.

4.1.3 Server
We now describe the functionalities of the server which include:
• launching simulators working in parallel;
• aggregating the simulation results;
• computing the values of HASL expressions;
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1 class BatchR {
2 public :
3 BatchR (size_t , size_t );
4

5 unsigned long int I;
6 unsigned long int Isucc;
7 double simTime ;
8

9 std :: vector <bool > IsBernoulli ;
10 std :: vector <double > Mean;
11 std :: vector <double > M2;
12 std :: vector <double > M3;
13 std :: vector <double > M4;
14 std :: vector <double > Min;
15 std :: vector <double > Max;
16 std :: vector < unsigned long int > bernVar ;
17

18 void addSim (const SimOutput &);
19 void unionR (const BatchR &);
20 void outputR (std :: ostream &f);
21 bool inputR (FILE* f);
22 };

Figure 4.10: A simplified version of BatchR.hpp

• and deciding the termination of the computation.

Result batch. The BatchR class (see Figure 4.10) is used to manage results
from batches of simulations. It maintains different values of path expressions, such
as the sum of results (in Mean), minimum and maximum values. The following
functions are available:

• addSim adds the results of a single simulation;
• unionR adds the results of another batch;
• outputR prints the current batch results into a file and inputR reads a file that

has been generated by outputR.

Server. The server algorithm is shown in algorithm 5. It requires the number
of parallel simulators to launch, the list of HASL formulas, and the statistical
parameters. When KillClient is called, it also erases all the current batches made
by running simulators.

Statistical methods. The evaluateHASL function of the server will compute
the new interval confidence for each HASL formula, using the Boost.Math library
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Algorithm 5: The server algorithm
Data: a Result

1 LaunchClients(P ) ;
2 while Result.continueSim() do
3 Wait for any simulator i to return its result ;
4 BatchR batchResult(P.nbAlgeb, P.nbQual) ;
5 batchResult.inputR(i) ;
6 Result.unionR(batchResult) ;
7 Result.evaluateHASL(batchResult) ;
8 KillClient() // Clean up after simulation is finished
9 printResults() // Output the simulation results

heavily. For example:
• in the case of a E(f) HASL formula, it computes the mean value by dividing Mean

by the number of successful simulations. Then, it uses the M2 value to obtain the
variance (V = m2−mean2 + 1

Succ
), using also the number of succesful simulations

(needed in the Chows-Robbin algorithm). The width of the confidence interval is
then obtained using the variance and the wanted confidence level;

• in the case of a sequential hypothesis testing, it constructs a confidence interval
(to be handled by the other functions of Cosmos). It uses a logarithmic version
of the likelihood ratio of the Wald method, for probabilities v1 and v2. If this
logarithmic value is negative, then returns the confidence interval [0, v2]. In the
other case, [v1, 1] is returned.

Using these confidence intervals, an approximation on the progress of the simulation
is made, using the ratio between the current width of the interval and the target
width. Note that it is possible to use a relative width. Finally, continueSim checks
whether the simulation should be continued:
• if the number of simulation exceeds the maximum number of simulations, then

it returns false;
• otherwise, if there is no target width and no sequential testing, then it returns

true;
• otherwise, if the the minimum value of all progress ratios is smaller than 1, then

it returns true;
• otherwise, it returns false.
Note that there is a slight difference in sequential hypothesis testing, as we collect
results by batch of simulations instead of one simulation at a time. However, one
may consider that this generated bias is small enough in most case, the size of a
batch being small enough compared to the final number of simulations.
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Possible Improvements. Cosmos is currently designed to work on a single
computer, and can benefit of multiple cores of a processor by launching several
clients in parallel. The current implementation can however be transformed for
multi-machine simulation by:

• transforming UNIX files (used for communication between processes) to sockets;
• broadcasting the Simulator binary to every machine.
This raise the problem of having a similar infrastructure so that the generated
binary can actually run on each of the machines. The current implementation
is not flexible enough to support binaries generated on different infrastructures:
there is no way to certify that the format of batch results will be the same on each
machine.

4.2 Improving the Binding Mechanism for high-
level nets

The original implementation for high-level Petri nets has two limitations: it cannot
handle infinite color classes (like the integers), and it was inefficient for large color
classes. Here, we describe our first implementation contribution: an alternative
data structure for markings on which we developed a more efficient search for
enabled bindings, in particular in the case where color classes are very large or
even infinite. This alternative data structure is toggled via a command-line option
by the user.

4.2.1 Standard Implementation

Processes = {a, b, c, d, e}
Ressources = {1, 2, 3} a

c

Processes

Waiting

1 2
1

Ressources

Available

Acquisition Acquired

<x>+<y>

<z>

<x,y,z>

Figure 4.11: An example of high-level Petri net
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High-level Petri nets. As described in section 4.1.1, Cosmos generates a file
markingImpl.hpp to handle marking of Petri nets. It is enhanced to handle colors
at the code generation.

In this file, each basic (finite) color domain dom is represented with:
• an enumeration of its colors (dom_color_Classe) with an element

Color_dom_dom_IC_i for each possible i a possible value of the color), Color_dom_Total
used to end iterations and Color_dom_All a special value used to represent all
colors of a domain in an edge;

• a structure dom_Token with two variables, one for its class c0 and the other for
its multiplicity mult. This structure will handle the iteration of the enumeration
of color classes (with functions iter, next(int i), and islast());

• a structure dom_Domain with one variable mult which is a vector of the multiplicity
of each possible color class. This structure will be used to handle the marking of
each place.

Finally, the class abstractMarkingImpl is defined, creating a C++ variable for
each place (which contains the marking of the place) and each variable of the net
(used to enumerate all the possible bindings). These C++ variables are typed with
the Domain structure described above.
Example 38. For the model shown in Figure 4.11, the initial marking is
represented in the following way:

• Processes: 1 0 1 0 0 ;
• Ressources: 2 1 0 ;
• Acquired: 0 . . . 0 (with 5× 5× 3 = 75 null entries).

The model of the net is similar to previously explained:
• the InitialEventQueue iterates over all transitions, then over bindings of the

variables of the transitions, then checks whether the transition is enabled using
this marking. If the transition is enabled, it is added to the event queue;

• the update function, shown in Algorithm 6 updates the event queue with the
same incremental method as before, but this time iterating over bindings when
needed.

Binding Iteration. As shown in Algorithm 6 describing the update function
for high-level Petri nets, the function nextPossiblyEnabledBinding is called to
iterate over bindings of a transition. This is done by iterating over the color
domains of each variable.
Example 39. Continuing example 38 : finding a binding for the Acquisition
transition requires iterating twice over the Processes and once over the Ressources,
for a total of 5× 5× 3 iterations.
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Algorithm 6: Function updating the Event Queue for a high-level Petri
Net
Data: the Event Queue EQ, a Time Generator TG

1 Function update(ctime,lastTr,EQ,TG)
Input : the current time ctime, the last activated transition lastTr,

the last associated binding lb, the Event Queue EQ and Time
Generator TG

2 for t ∈ PossiblyEnabled(lastTr) do
3 while b = nextPossiblyEnabledBinding(t, lb) do
4 if IsEnabled(t, b) then
5 if ¬EQ.isScheduled(t) then
6 generateEvent(F, b); EQ.insert(F )

7 for t ∈ PossiblyDisabled(lastTr) do
8 while b = nextPossiblyDisabledBinding(t, lb) do
9 if ¬IsEnabled(t, b) then EQ.remove(t);

10 for t ∈MarkingDependant do
11 for b ∈ t.bindingList do
12 if EQ.isScheduled(t, b) then
13 generateEvent(F ); EQ.replace(F )
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Note that the number of possible bindings can increase exponentially with
respect to the size of the expression labelling the edge. This was already observed
and lead to some optimization when the color functions are simple (like single
variables).

4.2.2 Alternative Implementation
Changes to the Marking class. Instead of using a map in dom_Domain, we
now use an ordered set of (dom_Token,mult) pairs. In C++, the set data structure
is implemented with red-black trees.
Example 40. For the model shown in Figure 4.11, the initial marking would
now be represented this way:

• Processes: {(a, 1), (c, 1)};
• Ressources: {(1, 2), (2, 1)};
• Acquired: ∅.

In this new setting, the memory used to store the marking is linear with respect
to the number of tokens.

The EventQueueSet class. This class (see Figure 4.12) is similar to the EventQueue
class as it still maintains three tables:

• evtTbl maps a transition and a binding hash to an Event;
• evtHeap is now a vector of Events, organized as a heap;
• evtHeapIndex maps a transition and a binding hash to the position of the

corresponding event in the heap (and −1 if there is no corresponding event).
Note that these definitions are different from those presented in section 4.1.2.

Binding Iteration. This time, the function nextPossiblyEnabledBinding tries
to find values for each variable by iterating over the content of each input place.
For remaining variables, it iterates over their color domain.

4.2.3 Benchmarks
In this section we describe two models, one of the patient flow in a hospital (with
one token per patient, each having a different color) and the other of a small
section of a motorway (with one token per vehicle). On these models, we run both
implementations on one core of an AMD Turion(tm) II Ultra Dual-Core Mobile
M640. This choice of a single core compared to a parallel implementation has no
impact on the relative performances. The simulation parameters have been chosen
so that all the simulation runs in less than 30 minutes. Moreover, the memory
consumption has been tested on the simulator alone (using /usr/bin/time -v).
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1 class EventsQueueSet {
2 private :
3 vector <map <size_t , long int >> evtHeapIndex ;
4 vector <map <size_t , Event >> evtTbl ;
5 vector <Event*> evtHeap ;
6 public :
7 void insert (const Event &);
8 void replace (const Event &);
9 void pause(double ,size_t , size_t );

10 bool restart (double ,size_t , size_t );
11 void remove (size_t , size_t );
12 bool isScheduled (size_t , size_t ) const;
13 Event& getEvent (size_t , size_t );
14 }

Figure 4.12: A simplified version of EventQueueSet.hpp
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Figure 4.13: The Hospital model
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Standard Alternative
Time Memory Time Memory

20 patients 81.6 s 3.96MB 115.6 s 3.90MB
100 patients 902.0 s 4.16MB 1184.6 s 3.85MB

Table 4.1: Benchmarks for the Hospital model

Standard Alternative
Cells Vehicles Time Memory Time Memory

50 10 418.9 s 2.60GB 4.09 s 4.06MB
50 100 1 610 s 2.60GB 9.27 s 4.07MB
500 10 Out of Memory 140.14 s 5.42MB
500 100 Out of Memory 77.93 s 5.57MB

Figure 4.14: Benchmarks for the SIA model

The Hospital model. The Petri net from [5] shown in Figure 4.13 describes the
flow of patients in a hospital emergency department. This net has been modified to
be able to scale the number of patients, and the diseases (and the patient priority)
are now chosen through stochastic transitions (instead of a static relation between
patient and disease priority). There is a single color class, representing the set of
patients.

All patients, represented by their tokens, start in the Healthy place. They can
FallIll, and are assessed at their arrival. Depending on the priority of their illness,
they go through different examinations and treatments.

Benchmarks for the Hospital model. We have run 5 000 trajectories of 200
time units with both implementations of the high-level models, for 20 or 100
patients. Results are shown in Table 4.1. The standard implementation runs this
model 25% faster than the alternative implementation, due to having the same
magnitude of tokens than of colors. In this case, the alternative implementation
does not have significant impact on the memory used.

The SIA model. The Petri net shown in Figure 4.2 is used to model vehicles
in a jammed motorway. It has been first presented in [15] and will be described
in more details in Chapter 5. It has six color classes: PosX, PosY (positions
in both axes), VitX, VitY (speed in both axes), AccX and AccY (acceleration in
both axes). The controlled vehicle is represented using the color domain PosX×
PosY× VitX× VitY× AccX× AccY and the other vehicles using the color domain
PosX× PosY× VitX× VitY. Note that the transition collision has a lot of different
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Temporal synch.
of simulation steps

sim_step1
DIRAC(δ) pri=1

step1

sim_step2
pri=1

step2

sim_step3
pri=1

step3

step4

Movement of environment vehicles

random_other
pri=2

C code

inProcess

update_other

pri=2

otherVehicles
< x, y, ẋ, ẏ >

< x, y, ẋ, ẏ >

< x, y, ẋ, ẏ >

Movement of controlled vehicle

update_self

pri=2
C code

selfVehicle< x, y, ẋ, ẏ, ẍ, ÿ >

< x, y, ẋ, ẏ, ẍ, ÿ >

Controlled vehicle decision

Controller

C code

end

x > xmax

collision
< x, y, ẋ, ẏ >

< x, y, ẋ′, ẏ′, ẍ, ÿ >

< x, y, ẋ, ẏ, ẍ, ÿ >

exit

x > xmax

< x, y, ẋ, ẏ >

enter

UNIF (a, b)

C code
< x, y, ẋ, ẏ >

initialized

initGeneration

C code

Table 4.2: The SIA model
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possible bindings. The behaviour of the different vehicles are modelled through C
code added to the transitions.

Benchmarks for the SIA model. We have run 60 trajectories of the model
until either the controlled vehicle exits the section of the motorway or a collision
happens. We do these simulations with different values of cells (number of possible
PosX values) and vehicles. Results are shown in Table 4.14. Note that the standard
implementation is far slower than the alternative implementation, and not even
running for high number of cells (because the size of the binding vector is higher
than the available memory). Finally, the alternative implementation runs faster
with more vehicles in the case of 500 cells, due to a higher collision rate. Moreover,
this alternative implementation uses negligible memory space compared to the first
color implementation in this example.

Conclusion. In the standard implementation, the memory space used to store
a marking is exponential with respect to the number of class occurrences in the
domain definition. For a transition, in the worst case, the binding enumeration
time is exponential with respect to the size of the expression labelling the edge.
Due to subtle optimisations of the rules, in some cases (as in the Hospital model),
the binding can be performed in constant time.

In the alternative implementation, the memory space used to store a marking
is linear with respect to the number of tokens. For a transition, in the worst case,
the binding is polynomial in the number of tokens in each place.

4.3 Simulink Integration
The Model class has been introduced in section 4.1.1 as a generalization of the
structure used for Petri nets. In this section, we describe how Cosmos transforms
Simulink models into this structure, with the approximate semantics described in
section 3.3.

The SKTime class. In order to avoid undesirable approximations when dealing
with time operations, we chose to represent time by the SKTime class. This class
consists of two integers: time and precision. A (t, p) SKTime would represent
a precise time of t.10−p. Usual arithmetic operations and relations have been
implemented in this class. Furthermore, cast must be done explicitly using the
getDouble function. This is particularly useful when dealing with latencies.
Example 41. The code shown in Figure 4.15 represent time calculations, using
a simple model with a static step (0.2) and a block of delay 0.4. The expected
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1 # include <stdio.h>
2 int main () {
3 double time = 0;
4 double target = 0;
5

6 for (int i=0;i < 6;i++) {
7 time = time + 0.2;
8 target = time - 0.4;
9 }

10 if (time < 1.2) { printf (" Smaller than 1.2\n"); }
11 else { printf (" Greater or equal to 1.2\n"); }
12

13 if ( target < 0.8) { printf (" Smaller than 0.8\n"); }
14 else { printf (" Greater or equal to 0.8\n"); }
15 return 0;
16 }

Figure 4.15: A toy example showing floating point approximation limits

Previous values RK45 buffer TC buffer

Figure 4.16: Buffer zones in Simulink vectors

behavior is that both time and target values are equal to respectively 1.2 and
0.8 after the 6 steps of the loop. However, running the executable generated
from this code prints Greater or equal to 1.2 and Smaller than 0.8. This
is explained by the fact 0.2 has no finite representation as a binary floating-point
value.

Model state. The state of a Simulink model in Cosmos is represented by a class
stateImpl using vectors indexed by the simulation step. There is one such vector
for the time values of the simulation (in the SKTime class), and one vector by
output signal for every block. The integer lastPrintEntry stores the current step
of simulation. Note that this class can be used, like markingImpl, as an input for
any function requiring a DEDState.

In order to deal with two particular features, these vectors have more cells than
the number of simulation step. Cosmos has nine additional cells:

• the buffer for application of the Runge-Kutta-Fehlberg method and its interme-
diate values requires six cells;

• the computation of the time of threshold crossings requires three cells: current
lower and upper bounds, and new candidate value.
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Model functions. As seen in section 4.1.1 that a Model class has to implement
three functions: initialEventQueue, update and fire. A Simulink model comes
with a unique transition, called SimulinkTransition, which remains in the Event
Queue at a time corresponding to the next simulation step. These functions are
defined as follows:

• initialEventQueue inserts the SimulinkTransition in the Event Queue at
time 0 with a minimal priority;

• fire computes the current values of each block at given time t, according to
the block ordering, then computes the value at t+ εT where εT is the minimum
increment of the SKTime value.

• update which computes the next simulation step, starting with the default step
size, and refining it due to the Runge-Kutta-Felhberg integration method and
the threshold crossing search.

These functions rely on basic ones:
• executeBlock evaluates the value of the outputs signals of the given block at

the given simulation step. It calls another function, findLatencyIndex which
returns the index corresponding to the delay of blocks with latency;

• computeBkwds computes the output values of the backward graph of the given
block at the given simulation step;

• estimateIntegrators performs the computation of the Runge-Kutta-Fehlberg
integrator over the whole model, using the dedicated cells. It also generates a
new approximation of step size if necessary.

Code generation. The simulink models, given in the default .slx format, are
a set of XML files describing the models and the architecture. The transformation
of these models into the C++ code implementing their behaviour through the
functions described in this section is done via OCaml. The information from the
XML tree is parsed using the standard Xml-light library and converted into a graph
which is represented by a pair:
• a list of blocks (the edges), which are 4-uplets (a string blocktype, an integer

blockid, a string name and a list of (string,string) pairs values;
• a list of simulinkLink values which are 4-uplets of integers (fromblock, fromport,

toblock, toport.
The default block values, provided separately in the Simulink model, are joined
to this graph representation as a list of (string blocktype,(string,string) values)
pairs. They are then used to complete the values of each block, not overwriting
any of the provided values of the block. The latency time of each block is then
computed from the given block values, as the Simulink value can be in a relative
format.

At this step, the blocks are usually only ordered by their identifier. It is now



4.4. MULTI-MODEL SIMULATION 111

necessary to reorder them, using the Block Ordering described in section 3.2.2.
It is done the following way, using a hash table c mapping each block ID to a
number, and a set s of blocks that can be added to the final sorted list (decreasing
corresponding c values and adding it to the list):

• first, fill this hash table by getting the number of incoming edges of each block;
• initialise s by adding all blocks with no incoming edges;
• add blocks not using any of their inputs to the final list of blocks;
• order blocks by increasing latency, then add blocks with non-infinitesimal latency

to the final list;
• then process the infinitesimal latency blocks (which is the Integrator blocks, plus

the DiscreteIntegrator blocks using the Forward-Euler method);
• finally, perform the topologic sort by dealing with each element of s.
The list of non-processed links between blocks is kept during this whole procedure,
and an error is returned if this list is not empty at the end.

Finally, the code is generated from this final list of blocks using each block’s
definition.

4.4 Multi-model Simulation

The requirements for automotive transports has led to deal with two different
formalisms: one for the probabilistic aspects used to model vehicular environments
(a high-level Petri net), and the other for the control aspects (a Simulink model).
This multi-model phenomenon tends to increases, which led us to to propose a
generic approach for multi-formalism modelisation.

In this section, we describe how the simulation with two models is handled,
including how communication is done between the two models. It is still a work in
progress, with the multi-model simulation currently only possible between Petri
nets and Simulink models.

4.4.1 Generic multi-model loop
Two models into one. In order to reuse most of the code handling the simulation
in the case of two interacting models, we embed them into one single model. This,
however, requires to dispatch the event handling between models. The MultiModel
class has two variables m1 and m2, each corresponding to one of the two models.
An additional shift parameter is added to the DEDS specification which should be
given when creating an instance of the corresponding class. The DEDS functions
are adapted as follows:

• initialEventQueue calls the function of both models;
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• fire calls the appropriate fire function, by checking whether the transition ID
tr is greater or equal to m2.shift, in which case it calls the m2 fire function
with the appropriate ID (tr −m2.shift). In the other case, it calls the m1 fire
function with the appropriate ID (tr);

• update calls the appropriate update function with the same parameters, except
for the transition ID.

This way, the Event Queue can be shared for both models. The only modifications
to model functions consist in dealing correctly with shift in calls of functions of the
Event Queue. This MultiModel is defined as a library, for any kinds of models.

Interface for communication. In the implementation of the MultiModel class,
we further add two functions to the MultiModel specification. These functions are
specific to the pair of considered models. They are generated when parsing both
models. These are:

• synchronize_fire which, after a transition is fired into a model, updates the
state of the other model considering as input the new state of the first model;

• and synchronize_update which fires the appropriate synchronisation transition
before calling the update function of the corresponding model.

Both functions are called in the respective fire and update functions, after the
operations described in the previous paragraph are performed.

Future works. As seen in the previous paragraphs, while the simultaneous
simulation of multiple models can be done in a generic way, the communication
between these models is done in a ad hoc manner. One possible way to generalize
the construction of communication between models would be introducing a formal
language to describe the relation between each model. This language would be
parsed and the appropriate code generated. Another improvement in the case of
multiple models would be to use communication paradigms of distributed models,
such as broadcast. One may also need to have informations shared between different
models.

4.4.2 Simulink and Petri Net Simulation
As seen in Chapter 1, it would be interesting to combine stochastic high-level Petri
nets and hybrid models since they present complementary features (randomness
versus continuous time and space). Hence, they are good candidates for instanciating
the generic multi-model loop presented in the previous section.

Interface transitions. In this paragraph, we detail the communication interface
between Simulink models and stochastic high-level nets.
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There are two kinds of interface transitions: SK -in transitions, directed from
the net to the SK -model and SK -out transitions in the other direction.

The input arcs of a SK -in transition (see Figure 4.17(a)) are test arcs (explained
with the firing) connected to places of the net. Any output arc is connected to the
input of a Simulink block. An SK -in is enabled when the content of at least one
of its input place is modified. The firing of such a transition proceeds as follows:
a function is associated with each output arc, taking as parameters the contents
of the input places. When the firing takes place, the function is evaluated. This
function can be specified by a multiset of tokens as illustrated, or by a C code
associated with the arcs.

The input arcs of an SK -out transition (see Figure 4.17(b)) are output signals
of an SK -model and the output arcs are overwriting arcs connected to places that
can only be connected to ordinary transitions of the net by read arcs. Similarly to
SK -in transitions, the output arcs are labelled by functions of the incoming signals.
Such a transition is activated at every sampling time of the SK -model. Upon firing,
it rewrites the contents of the output places according to the evaluation of the
function.

Parsing these transitions leads to the generation of the the synchronize_fire
and synchronize_update functions.

p

q

3p+ q

(a) An SK -in transition

x

y

bxyc

(b) An SK -out transition

Figure 4.17: Petri net/Simulink Interface transitions

Target Simulation loop. We now instanciate the multi-model simulation loop
for Simulink models and stochastic high-levels nets. All enabled transitions are
stored into an event queue implemented as a binary heap, with their time of
occurrence, their priority and weight. The next Simulink step is added as a possible
event. At each simulation step, the earliest event is chosen. Among simultaneous
events, the (decreasing) priority order is the following: 1. SK -out firings, 2.
ordinary transition firings, 3. SK -in firings, 4. SK -event. In case of equal priorities,
the choice is randomized according to the weights. Once an event is selected:

• If it is an ordinary transition firing, the marking is updated, the associated C
code is executed; transitions that are newly enabled trigger new events while
events corresponding to disabled transitions are removed.

• If it is an SK -in firing, the Simulink signals are updated and the time of the
Simulink event is set to the current time.
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• if it is the SK -event, all output signals are updated and the time of the Simulink
event is updated as presented in Section 3.3. Finally, the SK -out transitions are
added to the event queue with the current time.

• if it is a SK -out firing, the contents of output places are updated.
To simulate a discrete event system, at each step, one only has to compute what

the next event will be and increase the simulation time to the time of this event.
This is how ordinary Petri net transitions are fired in Cosmos. This leads to an
efficient simulation of such system as the time to compute a simulation depends on
the number of events and not on the simulated time. Unfortunately, this property
is lost when simulating hybrid systems: the SK -event is triggered at least at a fixed
frequency (δmax).

Implementation of the simulation loop. In practice, this simulation loop is
done using the synchronize_fire and synchronize_update functions we have
described in the previous paragraph. These functions are generated when processing
the Petri net. The generated functions work as follows:

• whenever the Simulink transition is called (which is the only case a SK -out transi-
tion exists in the queue), the corresponding synchronize_fire updates the cor-
responding markings in the net. Then, the corresponding synchronize_update
fires the SK -out transition described in the net before updating the Event Queue
using the net update function;

• the SK -in transitions appear in the net PossiblyEnabled vectors, which means
that whenever a transition changes the entry place of a SK -in transition, then
the SK -in transition is added to the event queue. The synchronize_fire corre-
sponding to this SK -in transition then use the setInput function of the Simulink
model, updating the corresponding Inport block. The synchronize_update
then calls updateInput which advances the SimulinkTransition to the current
time.

4.4.3 Use Case: Double Thermostat
Among the multiple systems that can be modeled using this enhanced version of
Cosmos, we choose a well known toy example (which is presented in our Petri Nets
18 article [16]): a device with two heaters prone to faults, and using bang-bang
controllers to keep the temperature in a room between 20◦C and 25◦C. The system
is modeled by a stochastic Petri net (Figure 4.18) with randomized faults and
repairs. The evolution of room temperature and heater behaviours are hybrid and
thus are modeled in Simulink (Figure 4.19). The fault transitions of the net have
an exponential time distribution (with different rates). The repairman, initially at
the Idle state, randomly chooses which (faulty) heater he will repair, then proceeds
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Figure 4.18: Petri net handling faults and repairs of a double heater
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Figure 4.19: A Simulink model computing differential equations for the double
heater. It contains four parts: the two heater temperatures, the external tempera-
ture and the block completing the differential equation

in fixed time and goes back to the Idle state. By default, both heaters are working
(places Op1 and Op2 have a token).

The Simulink model handles the differential equations for both heaters, and for
the outside temperature which is modelled by a sine wave (Text). The differential
equation is : Ṫ = 1On1c1(Th1 − T ) + 1On2c2(Th2 − T ) + cext(Text − T ) where c1,
c2, and cext are the respective thermal conductivity coefficients, Th1 and Th2 are
the respective temperatures at which each heater functions, and On1 and On2
are the respective states of each bang-bang controller which should maintain the
temperature between Tmin = 20◦C and Tmax = 25◦C. A bang-bang controller
is a very simple hysteresis controller where the heater is switched on (Oni = 1)
when the temperature decreases to Tmin and switched off (Oni = 0) when the
temperature increases to Tmax. The inputs F1 and F2 receive respectively the
content of places Op1 and Op2.

Figure 4.20 shows a simulation of the system. In the first period there is only
a small failure of heater 2, and we can observe the bang-bang behaviours of the
system. In the second period both heaters fail at the same time while the outside
temperature is low, thus the temperature quickly drops to 13◦C before the first
heater is repaired.

We are interested in several performance indices. The first type concerns the
reliability of the model measured by two indices: the minimal temperature observed
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5
10
15
20
25

Text
T

Op1
Op2

On1
On2

Figure 4.20: A trace of simulation: T and Text represent the inside and outside
temperatures, Opi corresponds to heater i being operational and Oni corresponds
to heater i being switched on. Gray areas highlight failure of at least one heater
when Text < Tmin.

along a trajectory (I1) and the time spent in a state where the temperature is
below 20◦C (I2). The second type concerns the average behaviour: the average
temperature (I3), the average number of switched-on heaters (I4), which is correlated
with the energy consumption of the system, and the average time during which the
repairman is idle (I5).

These indices are specified in HASL with an LHA (Fig. 4.21) which accepts
the trajectories after Stime time units. The LHA contains a hybrid variable tc
with derivative 1 when the temperature is below 20◦C and 0 otherwise. The
HASL expressions start with a probability operator : here AVG is used for all
indices to specify the average value over all trajectories; then a path operator (Min,
Last, Mean) which is defined along each path. Path operators take as parameters
algebraic expressions over the Petri net places and the LHA variables. For example,
I1 specifies the minimal temperature along a trajectory and then the average value
over all trajectories.

I1 : AVG(Min(T))
I2 : AVG(Last(tc))
I3 : AVG(Mean(T))
I4 : AVG(Mean(Active1 + Active2))
I5 : AVG(Mean(Idle))

(a) HASL formulas

l1 : ṫc = 0
T ≥ 20

l2 : ṫc = 1
T < 20

l3l3
#, t = Stime

#, t = Stime

All All

All

All

(b) LHA

Figure 4.21: HASL specification for performance indices

The model as it is described above is referred to as M0. In order to study the
overhead of integral computations over the stochastic simulation, we build two
additional alternative models. The first one M1 is a model where the integration
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block in the Simulink diagram has been replaced by a discrete time integrator. In
the model M2, the simulink part is omitted, keeping only events that are transition
firings.

Indices M0 M1
I1 [ 18.698 ; 18.716 ] [ 18.272 ; 18.289 ]
I2 [ 66.344 ; 67.217 ] [ 92.921 ; 93.927 ]
I3 [ 22.439 ; 22.442 ] [ 22.485 ; 22.488 ]
I4 [ 0.4999 ; 0.5006 ] [ 0.4884 ; 0.4890 ]
I5 [ 0.9239 ; 0.9242 ] [ 0.9239 ; 0.9241 ]

Models Build time Sim. time
M0 5.74s 6 885s
M1 5.73s 1 145s
M2 1.31s 1.810s

Table 4.3: Simulation results

Each model was run for 500 000 simulations of 2 000 seconds, with εV = 0.01
and δmax = 1. The sine wave frequency was 0.01 and oscillating between 5◦C and
25◦C, and the time step of the discrete-time integrator was δmax (1 second). We
used Th1 = 55◦C, Th2 = 65◦C, c1 = 0.02, c2 = 0.013 and cext = 0.04. Results are
reported in Table 4.3. The left table reports the computed confidence interval for
the different indices, the right one reports simulation and building times.

Tool analysis. The build time is always less than the simulation time and
becomes negligible when models include a Simulink part. The critical factors for
simulation time are: (i) the speed of step firing, about 10−7 sec. for net firing
compared to 10−6 sec. for Simulink steps, and (ii) the number of steps per trajectory,
about 40 for M2 vs. 2000 for M1. As expected, the use of a discrete-time Integrator
yields a faster simulation, albeit still far longer than the net alone, while it affects
the accuracy of the index values and more precisely triggers a larger variation of
temperature over time.

Property analysis. We focus on the most pertinent model M0, with two an-
tagonist goals: minimizing the installation cost (depending on the parameters of
heaters and repairman), and maximizing the comfort of the user (depending on
the temperature evolution). With the current parameters, each heater is active
about 1/4 of the time and the repairman is idle 92% of the time. The average
temperature is about 22◦C, reaching the objective, while the minimal temperature
is slightly above 18◦C.
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CHAPTER 5

CASE STUDIES

Abstract. The increasing development of autonomous vehicles leads to safety
challenges for the involved companies like Waymo and Tesla. The goal of the SVA1

industrial project [68] hosted by IRT SystemX is to provide methods, based on
simulation, for assessing the safety of autonomous vehicles. The members of the
project work in cooperation with major french car manufacturers such as Renault or
PSA Peugeot Citroën, but also suppliers of vehicle components such as Continental
or Valeo. In this section, we apply the earlier chapter developments to two relevant
case studies. In the first one, we describe the study of a simple motorway segment,
published in an industrial conference [15]. The second case concerns an entrance
ramp. It is more sophisticated since it requires a more complex decision-making
algorithm for the autonomous vehicle.

In order to provide an accurate modeling, we have identified the quantitative and
qualitative caracteristics of the scenarios: 1. the granularity of the representation
of the lane(s), 2. the random behaviour of environment vehicles, 3. the information
given to the controller, and 4. the controller algorithms to be analysed.
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5.1 Motorway Segment
Here, we consider a one-way motorway segment, with one controlled vehicle and
other vehicles with random behavior. We want to evaluate the given controller
with various performance indices, such as:
• the collision rate: probability of a collision before the vehicle exits the section;
• the distance to collision: expected travelled distance before collision, if any.

5.1.1 Model of the Motorway
The situation is depicted in Figure 5.1. The controlled vehicle, shown in red, and
the environment vehicles, shown in white rectangles, are handled separately. Their
position is characterized by the cell coordinates (i, j) representing position i on
lane j. The lateral and longitudinal speeds are also tracked for all vehicles, while
the accelerations on both axes are only kept for the controlled vehicle. Indeed, the
behaviour of the other vehicles is modeled by a random choice of speed every time
unit, while the acceleration of the controlled vehicle is produced by the controller
and the new speed is then computed in a standard way.

Figure 5.1: A motorway segment

Parameters, color classes and domains. The stochastic high-level Petri net
depicted in Figure 5.2 models our case study. It requires to fix some parameters:

• length Npos of the section;
• number N` of lanes;
• maximal speed vmax;
• and maximal number Nveh of vehicles.
The following color classes are defined using these parameters:
• PosX = J0, NposK the longitudinal positions;
• PosY = J0, N`K the lateral positions;
• VitX = J0, vmaxK the longitudinal speeds;
• VitY = J−1, 1K the lateral speeds;
• AccX = J−1, 1K the longitudinal accelerations;
• AccY = J−1, 1K the lateral accelerations.
From these color classes, the following color domains are defined:
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• SelfVehicle = PosX×PosY×VitX×VitY×AccX×AccY representing the data
of the controlled vehicle;

• OtherVehicle = PosX × PosY × VitX × VitY representing the data of any
environment vehicle.

The following variables are then defined: x is in PosX, y in PosY, ẋ and ẋ′ in VitX,
ẏ and ẏ′ in VitY, ẍ in AccX and ÿ in AccY.

Temporal synch.
of simulation steps

sim_step1
DIRAC(δ) pri=1

step1

sim_step2
pri=1

step2

sim_step3
pri=1

step3

step4

Movement of environment vehicles

random_other
pri=2

move_other

inProcess

update_other

pri=2

otherVehicles
< x, y, ẋ, ẏ >

< x, y, ẋ, ẏ >

< x, y, ẋ, ẏ >

< x, y, ẋ, ẏ >

Movement of controlled vehicle

update_self

pri=2
move_self

selfVehicle< x, y, ẋ, ẏ, ẍ, ÿ >

< x, y, ẋ, ẏ, ẍ, ÿ >

Controlled vehicle decision

Controller

filter_sensor;controller

Vehicle
interaction

end

x > xmax

collision
< x, y, ẋ, ẏ >

< x, y, ẋ′, ẏ′, ẍ, ÿ >

< x, y, ẋ, ẏ, ẍ, ÿ >

exit

x > xmax

< x, y, ẋ, ẏ >

enter

UNIF(a, b)

new_other
< x, y, ẋ, ẏ >

initialized

initGeneration

init

Figure 5.2: Motorway model

Slightly abusing notations since the variables are local to the transitions, we
describe a token of color domain SelfVehicle by the tuple 〈x, y, ẋ, ẏ, ẍ, ÿ〉 and
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tokens of color domain OtherVehicle by 〈x, y, ẋ, ẏ〉.

General structure. An ideal model would use the formalism of Cosmos as a
specification language, all the features of the case study being specified only using
high-level Petri nets. However, some features are currently not easily expressible
with such nets, for instance the random generation over numbers inside a token.
Furthermore, the controller algorithm is more naturally specified by a C code.

The model is shown in Figure 5.2 and the corresponding GrML files can be found
in the examples provided with Cosmos (in the folder Examples/domainset/SIA).
The model is composed of several parts:
• the green part schedules the simulation steps performed by the other parts;
• the brown part controls the movement of the controlled vehicle;
• the blue part controls the movement of the other vehicles;
• the unique transition of the red part specifies the decision of the controlled

vehicle;
• the pink part concerns vehicle interactions.

Synchronisation of simulation steps. Transitions sim_step1, sim_step2,
sim_step3 act as schedulers for the simulation parts: sim_step1 has a Dirac
distribution with a parameter corresponding to the time between two steps, while
sim_step2 and sim_step3 are immediate, thus enforcing the synchronous be-
haviour of the simulation. The priorities of the transitions enforce the order of
the simulation. There must be a token in step1 for random_other to be fired,
and this token will not leave step1 until all tokens of otherVehicles have been
processed. Then, this token is consumed by sim_step2, producing a token in step2
which allows update_other to be fired. Similarly, the step2 token cannot leave
the place until all tokens of inProcess have been processed. Then, this token is
consumed by sim_step3 which produces a token in step3, allowing update_self
then Controller to be fired in this order.

Note that, as enter, exit, collision and end have a zero priority, those
transitions cannot be fired during the synchronous step of the simulation, but only
once all steps have been completed.

Movement of other vehicles. The other vehicles are described using tokens of
color domain OtherVehicle. Due to the C function move_other, each firing of the
transition update_other produces an updated token with new speed and position
in place inProcess. Then, in the next simulation step, all tokens from place
inProcess are moved back to otherVehicles. As the definition of the behaviour
of other vehicles is part of the definition of the scenario, it is described in section
5.1.3.
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1 int newposition = (( int) (b.P->x).c0) + (( int) (b.P->dx).c0);
2 // The next lines define the value of " newway " and " newspeed ",

that depend on the scenario choices and are described in
section 5.1.3

3 ...
4 Marking .P-> _PL_inProcess += ( Vehicle_Token ( ( PosX_Color_Classe )

newposition , ( PosY_Color_Classe ) newway , ( VitX_Color_Classe )
newspeed , b.P->dy));

Figure 5.3: Function move_other

Movement of controlled vehicle. The controlled vehicle is described using a
token of color domain SelfVehicle. Transition update_self updates the speed
and position of the controlled vehicle via the move_self C function.

1 int newposition = (( int) (b.P->x).c0) + (( int) (b.P->dx).c0);
2 int newspeed = (( int) (b.P->dx).c0) + ((( int) (b.P->ddx.c0)) - 1);
3 Marking .P-> _PL_selfVehicle += ( SelfVehicle_Token ( (

PosX_Color_Classe ) newposition , b.P->y, ( VitX_Color_Classe )
newspeed , b.P->dy , b.P->ddx , b.P->ddy));

Figure 5.4: Function move_self

Controlled vehicle decision. This single transition represents the call to the
controller, including the modeling of the vehicle sensors. As the vehicle does not
communicate with the motorway, it only relies on its own sensors to detect the
other vehicles. We assume that the vehicle can only see vehicles which are close
enough (see Figure 5.5). The C function filter_sensor updates a vector data
of vehicles corresponding to the sensor view. Then, the evaluated controller is
called with this data vector and the current position and speed of the controlled
vehicle.

← vmax →← vmax →

Figure 5.5: The model of the sensors
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1 int seenVehicles =0;
2 int dbx=max (0,px -1);
3 int fbx=max (( int) px +2* vMax ,( int) Color_PosX_Total );
4 int dby=max (0,py -1);
5 int fby=max (( int) py+1,( int) Color_PosY_Total );
6 for (int i0=dbx;i0 < fbx;i0 ++) {
7 if (i0 >px+vMax) { dby=py; fby=py; }
8 for (int i1=dby;i1 < fby;i1 ++) {
9 for (int i2 =0; i2 < (int) Color_VitX_Total ;i2 ++) {

10 for (int i3 =0; i3 < (int) Color_VitY_Total ;i3 ++) {
11 if ( contains (
12 Marking .P-> _PL_otherVehicles ,
13 Vehicle_Token (
14 ( PosX_Color_Classe ) i0 ,
15 ( PosY_Color_Classe ) i1 ,
16 ( VitX_Color_Classe ) i2 ,
17 ( VitY_Color_Classe ) i3)
18 )) {
19 vehicle = {i0 , i1 , i2 , i3};
20 data[ seenVehicles ] = vehicle ;
21 seenVehicles ++;
22 }
23 } } }
24 }

Figure 5.6: Function filter_sensor
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Vehicle Interaction. This part of the net contains the transitions removing the
vehicles from the simulation in two situations:
• Transition exit (respectively end) is fired when the vehicle longitudinal position

is higher than Npos−vmax, and removes the environment (respectively controlled)
vehicle from the simulation.

• Transition collision is fired when some environment vehicle has the same (x, y)
position as the controlled vehicle.

Transition enter corresponds to the asynchronous part of the simulation, adding a
vehicle in the first vmax positions of a lane.

5.1.2 Specification of the Performance Indices
Observe that a trajectory ends when either end or collision is fired. The firing
of end cannot be synchronised with any of the HASL automata (see below), and
leads to an unsuccessful trajectory.

The HASL formula depicted in Figure 5.7 (a) is used to evaluate the probability
of collision, where T denotes the set of all transitions of the Petri net in Figure 5.2.
The synchronization implies that state scol is reached exactly when transition
collision is fired in the simulation and the expression PROB means that the
value returned is the probability of reaching scol.

The HASL formula depicted in Figure 5.7 (b) is used to evaluate the expected
distance covered by the controlled vehicle before collision (if it occurs). With
respect to the previous automaton, we add a new transition reaching state send
that will be synchronized with the transition end of the Petri net, and a variable x
that will take the current value of the horizontal position when the transition is
fired. The expression E(LAST(x)) (expected value of the last value of x) yields
the desired index.

start
s0 scol

T \ {collision, end}

collision

PROB
(a) I1

start
s0

scol

send

T \ {collision, end}
collision

x := PosF in

end
x := PosMax

E(LAST(x))

(b) I2

Figure 5.7: Two HASL formulas (a) for the probability of collision and (b) for
expected travelled distance
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Smooth velocity change Aggressive velocity change
Basic Lane-changing Basic Lane-changing

I1
0.838± 0.005 0.023± 0.005 0.847± 0.005 0.022± 0.005
468.51s 36 120 153.41s 6 620 459.67s 34 520 147.94s 6 020

I2
267.44± 6.68 102.61± 2.56 282.23± 7.06 106.22± 2.66
71.48s 5 400 4 147 s 169 640 74s 5 480 3 766 s 154 120

Table 5.1: Evaluation of controllers. For each measure, controller and other vehicle
behaviours, we provide a 99% confidence interval of the measure, the time in seconds
required to perform the simulation and the number of simulated trajectories.

5.1.3 Evaluation

The first objective of this benchmark is to compare the performances of different
controllers in various situations. As explained above, we measure the probability of
a collision (I1) and the expected covered distance before collision if any (I2). The
second objective is to quantify the influence of these parameters on the simulation
time.

Scenarios. To evaluate our approach we have modelled simple controllers. We
first study a basic controller (see Figure 5.8) which only aims at monitoring the
vehicle ahead (l.12–20) and aligns its velocity to avoid collision with it. When there
is no vehicle ahead or it is too far away, this basic controller speeds up until it
reaches a maximal velocity vmax (l.22). Then we study a more advanced controller
(see Figure 5.9) which is able to pass the vehicle ahead. In order to change its lane
the controller monitors vehicles in the two adjacent lanes (l.23–25). The controller
initiates a take over only when the speed of the vehicle in front of him is slower than
the speed vmax and when there is no vehicle in the two adjacent lanes (l.28–39).

We have evaluated the controllers in the environment described in section 5.1.1
with two kinds of behaviours for other vehicles. In one set of experiments, all
speed changes are smooth: at each step of simulation vehicles either stay at the
same speed, moderately accelerate (the speed is increased by 1) or moderately
decelerate (the speed is decreased by 1). This is done through move_other function
as shown in Figure 5.10. Those behaviours produce a highly predictive environment
making the controller job easier. In contrast the second set of experiment involves
vehicles with unpredicables speed changes: at each step of simulation, every vehicle
randomly selects a new speed in a predefined interval. The move_other function
of this scenario is shown in Figure 5.11.
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1 egoVehicle controller (int nb , radarData & data , egoVehicle & v) {
2 // Target data:
3 int nposx = v.posx; int nposy = v.posy;
4 int nvitx = v.vitx; int nvity = v.vity;
5 int naccx = v.accx; int naccy = v.accy;
6 // Looking for the vehicle ahead:
7 int opx = 0; int opy = 0;
8 int ovx = 0; int ovy = 0;
9 bool seenother = false ;

10 int posbest = INT_MAX ;
11 othVehicle veh;
12 for (int i=0; i < nb; i++) {
13 veh = donnees [i];
14 opx = veh.px; opy = veh.py;
15 ovx = veh.vx; ovy = veh.vy;
16 if (opy == posy) { // If vehicle in same lane ,
17 seenother = true;
18 // Check whether it is closer than the last chosen

vehicle :
19 if (opx < posbest ) { posbest = opx; nvitx = ovx; }
20 }
21 }
22 if (not seenother ) { nvitx = Vmax; }
23 // New vehicle :
24 egoVehicle valeurs = { nposx , nposy ,
25 nvitx , nvity ,
26 naccx , naccy };
27 return valeurs ;
28 }

Figure 5.8: Basic controller
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1 egoVehicle controller (int nb , radarData & data , egoVehicle & v) {
2 // Target data:
3 int nposx = v.posx; int nposy = v.posy;
4 int nvitx = v.vitx; int nvity = v.vity;
5 int naccx = v.accx; int naccy = v.accy;
6 // Looking for the vehicles ahead:
7 int opx = 0; int opy = 0;
8 int ovx = 0; int ovy = 0;
9 bool seenother = false; int posbest = 0;

10 int oupx = 0; int oupy = 0; int ouvx = 0; int ouvy = 0;
11 int odpx = 0; int odpy = 0; int odvx = 0; int odvy = 0;
12 bool seenup = false ; bool seendown = false ;
13 int bestup = 0; int bestdown = 0;
14 int fvy = 0; int uvy = 0; int dvy = 0;
15 int fvx = 0; int uvx = 0; int dvx = 0;
16 int fpx = 0; int upx = 0; int dpx = 0;
17 othVehicle veh;
18 for (int i=0; i < nb; i++) {
19 veh = donnees [i];
20 opx = veh.px; opy = veh.py;
21 ovx = veh.vx; ovy = veh.vy;
22 // Similarly as the basic controller (l.20 - -24):
23 // Put the target vehicle of current lane in (posbest , nvx)
24 // Put the target vehicle of above lane in (bestup , uvx)
25 // Put the target vehicle of below lane in (bestdown ,uvx)
26 }
27

28 if (not seenother ) { nvitx = vMax; }
29 else if (not seenup ) { nposy = v.posy +1; nvitx = vMax; }
30 else if (not seendown ) { nposy = v.posy -1; nvitx = vMax; }
31 else { // Try to adjust speed to the fastest vehicle ahead and

go to its lane if possible
32 nvitx = fvx;
33 if (dvx > nvitx && dpx > v.posx) {
34 nvitx = dvx; nposy=posy -1;
35 }
36 if (uvx > nvitx && upx > v.posx) {
37 nvitx = uvx; nposy=posy +1;
38 }
39 }
40 // Output the new values :
41 egoVehicle valeurs = { nposx , nposy ,
42 nvitx , vity ,
43 naccx , naccy };
44 return valeurs ;
45 }

Figure 5.9: Simple lane-changing controller
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1 int newposition = (( int) (b.P->x).c0) + (( int) (b.P->dx).c0);
2 int deltaspeed = (rand () % 3) - 1;
3 int newway = (( int) (b.P->y).c0);
4 int newspeed = max(minSpeed ,min(maxSpeed ,(( int) (b.P->dx).c0)+

deltaspeed );
5 Marking .P-> _PL_inProcess += ( Vehicle_Token ( ( PosX_Color_Classe )

newposition , ( PosY_Color_Classe ) newway , ( VitX_Color_Classe )
newspeed , b.P->dy));

Figure 5.10: Function move_other with smooth speed changes

1 int newposition = (( int) (b.P->x).c0) + (( int) (b.P->dx).c0);
2 int deltaspeed = rand () % (2* maxSpeed +1);
3 deltaspeed = deltaspeed - maxSpeed ;
4 int newspeed = max(minSpeed ,min(maxSpeed ,(( int) (b.P->dx).c0)+

deltaspeed );
5 int newway = (( int) (b.P->y).c0);
6 Marking .P-> _PL_inProcess += ( Vehicle_Token ( ( PosX_Color_Classe )

newposition , ( PosY_Color_Classe ) newway , ( VitX_Color_Classe )
newspeed , b.P->dy));

Figure 5.11: Function move_other with unpredictable speed changes

Simulation parameters. The results of our simulations are collected in Table 5.1.
For these computations we simulate a motorway with 2 lanes and 1000 cells. The
controlled vehicle is surrounded by 20 other vehicles for which speed varies between
3 and 5 cells per step. More precisely, all vehicles (including the controlled one)
are generated randomly, with a uniform distribution on both lanes and cells (up to
the 200th). If a vehicle is generated on a cell where there is another vehicle, we
generate new values for both lane and cell. The I1 performance index is estimated
with a fixed confidence interval width of 0.01, and the I2 performance with a
relative confidence interval width of 5%. All simulations were performed on a single
machine with 12 Intel Xeon cores using 8 parallel threads.

Controller evaluation. Comparing the probability of collision between the two
controllers, we observe that the lane changing controller is far better than the basic
one: 2.3% probability of collision vs 83.8% in the smooth environment and 2.2% vs
84.7% in the more aggressive one. We notice that the behaviours of other vehicles
do not have a major impact on the probability of collisions. Similarly, the average
travelled distance before collision is highly different between the two controllers.

In Table 5.1 we also observe that most collisions occurred at the beginning of
the simulation. They occur around cell 104 for the lane changing controller and
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around cell 275 for the basic one. This shows that the simulation is biased by its
initial state. More reliable results could be obtained by simulating a sliding window
of the motorway around the controlled vehicle. Instead of simulating the controlled
vehicle on the entire motorway we could make the controlled vehicle static in the
middle of a short motorway and simulate all vehicles relatively to the controlled
one.

Furthermore, in real life, the other vehicles do not behave randomly but follow
an implicit control law thus reducing again this probability. In summary, this
benchmark could be improved by adding these elements in order to obtain more
accurate results (see section 5.2).

Scalability evaluation. We finally observe in Table 5.1 that when the probability
of collisions becomes small, the number of simulations required to obtain relevant
estimates becomes large. This can be seen for instance when comparing the required
time to estimate the average distance before collision for the two controllers (71s
vs 4147s and 74s vs 3766s). Thus the simulation could be intractable when the
probability of collisions becomes close to zero. This is a well-known difficulty in
presence of rare events for which several theoretical techniques and practical tools
have been developed in the literature [64, 18] and can be used to improve this
simulation.

Possible Improvements. We have identified other limits of our simulation
which should be overcome to produce more precise results. Compared to real
vehicles which feature turn signals and braking lights, there is no communication
between vehicles in our simulation. This prevents the controller from synchronising
its action with those of other vehicles. The behaviours of vehicles on the motorway
should be enhanced to include some communication.

Currently, a synchronous simulation step is done in linear time with respect
to the number of vehicles. A modeling integrating such synchronisation between
vehicles would induce a quadratic blowup of this synchronous step and would
require the introduction of the sliding window to overcome this complexity.

5.2 Entrance Ramp
We now consider an entrance ramp into a motorway segment, again with one
controlled vehicle. A given controller will be evaluated with various performance
indices, such as:

• the vehicle collision rate, i.e. the probability of a collision with another vehicle
before the controlled vehicle exits the section;
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• the barrier collision rate, i.e. the probability of the vehicle not entering the
motorway segment at the end of the entrance ramp (and colliding with the
barrier);

• the severity of collision, related to the velocities during a collision.

5.2.1 Model
Our model is based on an official French document [55]; the situation is depicted in
Figure 5.12, using a longitudinal cell size of 7 meters. The model is similar to the
case described in the previous section, except that the lanes are cut into 5 lateral
sections. The lateral granularity is finer since we need to take into account the
progressive entrance of the vehicle. The choices of 40 pre-entrance cells and 40
entrance cells are based on a 100km/h motorway segment according to [55]. This
speed is called the expected speed of the segment, which is below the maximal speed.
We add 20 cells to the section to check whether the vehicle is correctly inserted in
the section. We also suppose that the controlled vehicle has all traffic information
and tracks vehicles with unique identifiers. This choice is justified with respect
to the capacities of sensors and the length of the section. With this size of cell
and time step, the minimum positive acceleration is already above the standard
acceleration.

pe = 40 cells 30 5× 2 20

x
y

Figure 5.12: An entrance ramp to a motorway segment

Parameters, color classes and domains. Similarly to the previous section,
the stochastic high-level Petri net depicted in Figure 5.13 models this case study,
with the following parameters to be fixed:
• initial number Nveh of vehicles;
• maximal speed vmax (with a default value of 5);
Note that we have a fixed number of vehicles in the simulation: no vehicle enters.
The following color classes are defined:
• PosX = J0, 100K the longitudinal positions;
• PosY = J0, 15K the lateral positions, corresponding to three lanes, centered in

positions 2, 7 and 12;
• VitX = J0, vmaxK the longitudinal speeds;
• VitY = J−1, 1K the lateral speeds;
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• AccX = J−1, 1K the longitudinal accelerations;
• AccY = J−1, 1K the lateral accelerations;
• VehId = N the vehicle identifiers.
From these color classes, the following color domains are defined:

• SelfVehicle = PosX× PosY× VitX× VitY× AccX× AccY× VehId representing
the state of the controlled vehicle;

• OtherVehicle = PosX× PosY× VitX× VitY× VehId representing the state of
any environment vehicle.

The following variables are then defined: x and x′ whose type is PosX, y and y′
whose type is PosY, ẋ and ẋ′ whose type is VitX, ẏ and ẏ′ whose type is VitY, ẋ
whose type is AccX, ẏ in AccY, m and k in VehId.

With the same notations as in the previous section, we describe a token of color
domain SelfVehicle by the tuple 〈x, y, ẋ, ẏ, ẍ, ÿ, k〉 and a token of color domain
OtherVehicle by 〈x, y, ẋ, ẏ,m〉.

General structure. Based on the motorway segment model from section 5.1.1,
the new model is composed of the following parts:

• the green part schedules the simulation steps performed by the other parts;
• the brown part controls the movement of the controlled vehicle;
• the blue part controls the movement of the other vehicles;
• the unique transition of the red part specifies the decision process of the controlled

vehicle;
• the pink part concerns vehicle interactions.

Synchronisation of simulation steps. This part is identical to the one in the
motorway segment model. Transitions sim_step1, sim_step2 and sim_step3 act
as schedulers for the simulation parts: sim_step1 has a Dirac distribution with
a parameter corresponding to the time between two steps, while sim_step2 and
sim_step3 are immediate, thus enforcing the synchronous behaviour of the simula-
tion. The priorities of the transitions enforce the order of the simulation. There
must be a token in step1 for random_other to be fired, and this token will not leave
step1 until all tokens of otherVehicles have been processed. Then, this token is
consumed by sim_step2, producing a token in step2 which allows update_other
to be fired. Similarly, the step2 token cannot leave the place until all tokens
of inProcess have been processed. Then, this token is consumed by sim_step3
which produces a token in step3, allowing update_self then Controller to be
fired in this order.

Movement of other vehicles. The other vehicles are described using tokens of
color domain OtherVehicle. Due to the C function move_other, each firing of the
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Figure 5.13: Entrance ramp model
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transition update_other produces an updated token with new speed and position
in place inProcess. Then, in the next simulation step, all tokens from this place
are moved back to otherVehicles. As the definition of the behaviour of other
vehicles is part of the definition of the scenario, it is described in Section 5.2.3.

Movement of controlled vehicle. The controlled vehicle is described using a
token of color domain SelfVehicle. Transition update_self updates the lateral
and longitudinal speed and position of the controlled vehicle via the move_self C
function shown Figure 5.14.

1 int newposition = (( int) (b.P->x).c0) + (( int) (b.P->dx).c0);
2 int newspeed = (( int) (b.P->dx).c0) + ((( int) (b.P->ddx.c0)) - 1);
3 Marking .P-> _PL_selfVehicle += ( SelfVehicle_Token ( (

PosX_Color_Classe ) newposition , b.P->y, ( VitX_Color_Classe )
newspeed , b.P->dy , b.P->ddx , b.P->ddy));

Figure 5.14: Function move_self for the Entrance Ramp

Controlled vehicle decision. This single transition represents the call to the
controller. We now consider that the vehicle can either see all the vehicles of
the section via, for instance, a radar (as the section is fairly small) or get this
information via communication with the motorway. The controller can obtain
through the orderedVehicle function a vector of vehicles that are ordered by
increasing lateral position, increasing longitudinal position, then incresing lateral
and longitudinal speed. The controller function being the target of the evaluation,
it is described in Section 5.2.3.

Vehicle Interaction. This part of the net contains the transitions removing the
vehicles from the simulation in two situations:
• Transition exit (respectively end) is fired when the vehicle longitudinal position

is higher than Npos− vmax and removes the environment (respectively controlled)
vehicle from the simulation;

• Transition out is fired when the position of the controlled vehicle is outside the
segment (in the case it does not leave the entrance ramp on time);

• Transition collision is fired when any the environment vehicle has the same
longitudinal position and either the same lateral position, or a lateral position
that is one higher or lower.
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5.2.2 Specification of the Performance Indices
A trajectory ends when either end, out or collision is fired. The three HASL
formulas shown in Figure 5.15 are based on the single automaton, which sets the
appropriate variable to true, according to the outcome of the simulation.

start
s0

scol

send

sout

T \ {out, collision, end}

collision
collide := 1

end
exit := 1

out
outside := 1

E(LAST(collide))
E(LAST(exit))

E(LAST(outside))

Figure 5.15: The HASL formulas for the probabilities of each outcome

These three performance indices only measure the kind of collision (if any)
that has happened. A fourth performance index, E(LAST(CollForce)) is added,
measuring the severity of the collision. The value of CollForce is defined as follows:

• if the controlled vehicle reaches the end of the motorway section without collision,
CollForce is set to 0;

• if the controlled vehicle goes outside the motorway segment, CollForce is set to
1 + v2

x whwere vx is the longitudinal speed of the vehicle;
• if the controlled vehicle collides with another vehicle w, CollForce is set to

1 + |wx − vx|2 where vx and wx are their respective longitudinal speeds.
This choice of values should give a decent approximation: the collision is not too
dangerous at a low speed, but the higher the relative speed, the (quadratically)
greater the damages are.

5.2.3 Evaluation
The first objective of this benchmark is to compare the performances of two
controllers in various situations. As explained above, we measure the probability of
a collision (I1), the probability of leaving the entrance ramp unproperly (I2), the
probability the entering motorway properly (I3) and the severity of a collision (I4).
We also measure the probability of a timeout (TO) where the controlled vehicle
fails to enter the motorway into the 500 simulation steps. The second objective is
to quantify the influence of some parameters on the simulation time, in order to
check the scalability of our approach. These parameters are: the number of vehicles
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on the motorway, the presence of vehicles on the entrance ramp, and whether a
new environment vehicle is inserted after an exit.

Controller. Let us now detail the two controllers. The first one tracks two
vehicles, Vfront and Vbehind, the vehicle directly behind Vfront on the target lane.
Then, it compares their positions and speeds, before either choosing a new front
vehicle or starting the entrance process. This entrance process also requires that
the controlled vehicles accelerates or decelerates up to the front vehicle speed. It
is initiated if the front vehicle is ahead of the controlled vehicle and the speed is
reached. These tasks are described more thoroughly later on.

The second controller is built over the first one, trying to avoid collisions with
other vehicles in the Entrance Ramp by accelerating if the vehicle behind is too
fast and close, and decelerating if the vehicle ahead is too slow and close. Moreover,
when the barrier is too close, it changes its strategy and avoids colliding with a
barrier by slowing down to zero.

Environment vehicles. The behaviour of the environment vehicles is more
refined here than in the first case study. We assign a mode to each of these vehicles.
Let us describe these modes:

0. In this (default) mode, the vehicle adjusts its speed to the target vehicle (the
vehicle ahead). If this target vehicle is far away, then it adjusts its speed to
the expected speed of the segment. It only does so by unit increments or
decrements. This models the expected behaviour on the motorway.

1. In this mode, the vehicle does not check anything and continues at its current
speed. This models, for example, a micro-sleep of its driver.

2. In this mode, the vehicle decelerates if its speed is above two cells per time
unit. This could model the driver being interrupted by a phone call.

3. In this mode, the vehicle changes lane to the right lane of the motorway
segment. This is used in the two following cases: either the vehicle is on
the left lane and is preparing for the next exit, or the vehicle is also in the
entrance ramp and is preparing to enter the motorway.

The choice of the current mode is randomized (see Figure 5.16) in the following
way:
• The starting mode is mode 0 (speed adjustment);
• If the vehicle is currently in the entrance ramp at position x, then it switches

to mode 3 (lane change) with probability (x−c1+1)
c2−c1+1 (meaning that the further it

is to the end of the entrance ramp, the higher is the chance of going into the
motorway segment). We set c1 to 40 (the first position where the vehicle may
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1 if (cmode == 0) {
2 if (voie > 9) {
3 rdmval =40 + rand () %41; /* random between 0 and 40 */
4 if ( position > rdmval ) { } else { cmode =3; }
5 } else {
6 rdmval =rand () %200;
7 if ( rdmval ==0) { cmode =2; }
8 else if ( rdmval < 5) { cmode =1; }
9 else if ( rdmval < 7 && voie !=7) { cmode =3; }

10 }
11 } else if (cmode == 1) { // Sleep
12 rdmval =rand () %4;
13 if ( rdmval ==0) { cmode =0; }
14 } else if (cmode == 2) { // Phone call
15 rdmval =rand () %5;
16 if ( rdmval ==0) { cmode =0; }
17 } else if (cmode == 3) { // Lane Change
18 if (voie ==7) { cmode =0; }
19 }

Figure 5.16: Mode change function

enter) and c2 to 80 (the last position of the full entrance ramp), according to the
parameters shown in Figure 5.12;

• If the vehicle is currently in mode 3 (lane change), it deterministically goes back
to the mode 0, only if it has reached the destination lane;

• If the vehicle is in mode 1 (micro-sleep), there is at each time step a probability
25% to return in default mode. Similarly, in mode 2 (phone call), we assign a
probability 20%.

• If the vehicle is in mode 0, it can change its mode either to mode 1 (with
probability 2.5%), mode 2 (with probability 0.5%), or mode 3 (with probability
1%, only if it is not yet in the middle of the right lane).
Moreover, we consider two possible situations for the other vehicles:

• In the first situation, a vehicle leaving the motorway from the main lanes is
replaced by another one entering it (with the same ID, same speed, and same
lane). This keeps the number of vehicle constants. This situation is depicted
with the # pictogram in the tables;

• In the second case, a vehicle leaving the motorway from the main lanes is simply
removed.

Detailed controller specification. The controllers perform four consecutive
tasks, the current one being stored in the currstate variable as described below:

0. accelerating in the entrance ramp before the entrance location;
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Figure 5.17: The two target vehicles

1. synchronising with the vehicules inside the segment;
2. entering into the motorway segment;
3. driving in the motorway segment.

In order to perform these tasks, the controller maintains two variables: targetspeed
the current target longitudinal speed, and targetway the current target lateral
position. These tasks rely on finding two vehicles between which the controlled
vehicle will enter the motorway segment (see Figure 5.17); the two target vehicles
identifiers will be stored in targetfront and targetbehind. The procedure is
described in Algorithm 7. The controller enumerates the vehicles with respect to
the decreasing longitudinal position, until the vehicle A is behind the controlled
vehicle and there is enough space between A and B the vehicle in front of A. The
variables targetbehind and targetfront are respectively set to A and B.

Algorithm 7: The targetChoice procedure
Data: the ordered vehicle vector vehicles
Result: The two target vehicles targetfront and targetbehind

1 firstvehicle← 1 ;
2 targetfront← 0 ;
3 targetbehind← 0 // Id of controlled vehicle
4 while there is another vehicle vehicle in vehicles do
5 if vehicle.py ∈ [5; 10] then

// The vehicle is at least partly in target lane
6 if firstvehicle then
7 targetbehind← vehicle
8 else
9 targetfront← targetbehind ;

10 targetbehind← vehicle ;
// We are checking the vehicles in decreasing px

order: the new vehicle is behind the previous.
11 if targetfront.px− targetbehind.px ≥ 3 and

targetbehind.px < px then return;
// The distance is good enough for an insertion.



5.2. ENTRANCE RAMP 139

Algorithm 8: Tasks of the controller
Data: The target vehicles targetfront and targetbehind
Result: A target longitudinal speed targetspeed and lateral position

targetway
1 if currstate == 0 then

// Acceleration
2 targetspeed← targetfront.px ;
3 targetway← py // The current lateral position
4 if px > pentrance then currstate← 1 ;
5 if currstate == 1 then

// Synchronisation
6 targetspeed← targetfront.px ;
7 targetway← py ;
8 if targetfront.px > px and vx = targetspeed then

currstate← 2 ;
// If the front target is in front of the controlled

vehicle and we have reached its speed, we can continue.

9 if currstate == 2 then
// Entrance

10 targetspeed← targetfront.px ;
11 targetway← 7 // The middle of the lane next to the ramp
12 if py == targetway then currstate← 3 ;
13 if currstate == 3 then

// Driving, similar to the Motorway Section.
14 targetspeed← targetfront.px ;
15 targetway← 7 ;
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Controller Version 1
10 10 ↗ 10 # ↗ 20 # ↗

I1 [0.016, 0.019] [0.043, 0.047] [0.041, 0.046] [0.126, 0.133]
I2 [0.053, 0.057] [0.067, 0.073] [0.070, 0.076] [0.035, 0.039]
I3 [0.925, 0.929] [0.881, 0.887] [0.880, 0.887] [0.829, 0.838]
I4 [0.016, 0.019] [0.100, 0.112] [0.100, 0.111] [0.184, 0.197]

TO
Simulations 151 000 81 000 83 000 71 000

Time 1 672s 1 014s 1 519s 3 601s

Controller Version 2
10 10 ↗ 10 # ↗ 20 # ↗

I1 [0.080, 0.089] [0.144, 0.155] [0.182, 0.185] [0.202, 0.220]
I2
I3 [0.793, 0.805] [0.770, 0.783] [0.815, 0.817] [0.780, 0.798]
I4 [0.259, 0.286] [0.466, 0.504] [0.601, 0.607] [0.486, 0.537]

TO [0.112, 0.121] [0.069, 0.078] [8.1 · 10−4, 9.3 · 10−4] [0, 3.4 · 10−4]
Simulations 37 000 34 000 2 000 000* 16 000

Time 515s 486s 39 041s 828s

Non meaningful Zero by construction
N∗ Reached maximum simulation number

Table 5.2: Evaluation of controllers (with 99% confidence interval and 10% relative
width)

The different tasks are described in Algorithm 8. During the acceleration phase,
the controller synchronises its longitudinal speed to the front target longitudinal
speed. It only moves to the next task after reaching the longitudinal position pe.

Simulation parameters. The two previously described controllers are evaluated
through four different scenarios, presented in order of increasing difficulty for the
controller:

• the first one has 10 vehicles in the motorway segment;
• the second one has additional vehicles in the entrance ramp;
• in the third one, the enivronment vehicles are added back to the beginning of

the motorway section when they have reached the end;
• in the fourth one, there are 20 vehicles in the motorway segment that are still

added back, and the vehicles on entrance ramp are kept.
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In Table 5.2, these scenarios are represented using symbols: the number indicates
the number of vehicles in the motorway segment, the # symbol indicates that
exiting vehicles are replaced and the ↗ symbol indicates that some environment
vehicles are present in the entrance ramp.

Let us recall the performance indices:
• I1 the probability of collision with another vehicle;
• I2 the probability of collision with a barrier of the entrance ramp or the motorway

segment (when the vehicle did not enter properly);
• I3 the probability of a successful entrance in the motorway;
• I4 the average severity of the collision as described in section 5.2.2;
• and TO the probability of a timeout (in the case where the vehicle stays at null

velocity).
We have chosen to perform these evaluations with a 10% relative width, a 99%
confidence interval, and a limit of 2 000 000 simulations for a single scenario, on a
single machine with 12 Intel Xeon cores, using 8 parallel threads.

Controller evaluation. The results are shown in Table 5.2. On the easiest
scenario, the first controller already fails to enter almost 8% of the time and often
collides with the barrier. The examination of Algorithm 8 reveals that no check is
performed in the synchronisation state on either the vehicle behind, or the closeness
of the end of the entrance ramp. It only checks whether the front target is indeed
in front of the vehicle.

The chance of collision increases as expected with respect to the scenario
difficulty. More interestingly, the main factor is the number of the vehicles either
in the main lane or the entrance ramp. For instance, the number of collisions more
than doubles between the easiest and most difficult scenarios.

However, adding the possibility for vehicles to loop in the section does not
increase the chances of a collision, except slightly increasing a barrier collision
chance, because less place is available for the vehicle to enter. It is only when a
lot more vehicles are added to the simulation that the chance of success drops to
around 83% (17% of failure).

For the second controller, designed to avoid any barrier collision and reduce
the collisions in the entrance ramp, the results are surprisingly worse than those of
the first controller. Indeed, the controlled vehicle completely avoids barriers but
this cost of a greatly increased collision probability. In addition, with a significant
probability, the vehicle fails to enter the motorway segment within the 500 time
units. Whatever the scenario, the probability of entrance success is now between
77% and 82%.

These results show that to avoid collisions with vehicles in the entrance ramp,
or the barrier, requires more attention for the design of the controllers. Besides, the
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overall collision rates are far higher than the realistic ones. It remains to understand
whether the scenarios are too pessimistic or the controllers are too basic.

Scalability evaluation. We have chosen a relative width since we expected that
some performance indices could be very small. In fact, this occurs in two cases,
corresponding to the two hardest scenarios for the second controller. In the first
case (10 # ↗) we stop without reaching the 10% relative width because of the
2 000 000 simulation limit. This case illustrates the rare event phenomenon.

In the other case, the simulation stops when reaching the 10% relative width
on the three other performance indices, because Cosmos entirely ignores, for its
termination condition, a performance index whose simulated mean is zero. It is
very likely that rare events are associated with this performance index: the lower
bound is zero, since no simulation has timed out; however, this simulation cannot
guarantee that it never happens. This would require a further study.

With only 10 environment vehicles, 90 simulations are performed per second,
which is more than in the Motorway Segment case study. Progressively adding
difficulties, it drops to 79 per second with up to two vehicles in the entrance ramp,
then to 54 per second with the vehicles being allowed to loop. The worst case
scenario has only 19 simulation per second, performed with 6 cores, which is only
a third of the simulation speed of the first case study.

Possible Improvements. The chances of collision are really high for the case
study: over such a segment of 120 cells (which is around 840 meters) the collision
rate is approximately 10−9. None of the simulations have produced a better entrance
rate than 93%. We have already dicsussed that the first controller was rough, not
even trying to notice whether other vehicles are interacting in the entrance ramp.
The discussion could be extended to the second controller, for which the additional
checks to avoid barrier collisions lead to a greater vehicle collision rate than the
sum of collision rates of the first controller. However, the design of controllers is
outside the range of the thesis, and we must limit to some improvement ideas:
a new controller could improve its estimation of the next positions of the target
vehicles, and allow for acceleration during a manoeuver.

We have only roughly modeled the behaviour of the other vehicle: in real
situation, a vehicle on the motorway might decide to slightly go on the left to ease
the entrance of a vehicle in the entrance ramp. This, with the controller slightly
enforcing its entrance before the end of the entrance ramp, could help reducing the
number of collisions.
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Summary

Based on several case studies of autonomous vehicle situations, we have identified
the need for an expressive formalism of probabilistic hybrid systems. Rather than
building it from scratch, we decided to combine stochastic high-level Petri nets
with Simulink. The interest of high-level stochastic Petri nets comes from the fact
that it is supported by the performant tool Cosmos, while Simulink is a de facto
standard for the design of vehicle controllers. Furthermore, the features of the
two models are complementary. Generalising our objectives, we proposed to follow
a multi-model approach to combine several formalisms. In order to empirically
validate this approach by simulations over examples, this multi-model formalism
had to be integrated into Cosmos. This required several steps:

• providing a formal syntax and exact semantics for (a significant fragment of)
Simulink. The block-diagram models are transformed into a set of differential
equations over subintervals of the simulation time, taking into account the modes
related to threshold crossings and the delays of blocks with latencies;

• providing an operational semantics intended to accurately approximate the
exact semantics, when the trajectory exists. Our approach relies on several
approximation methods, such as Runge-Kutta integration method, zero-crossing
detection, and linear interpolation for latencies;

• implementing three important upgrades in Cosmos:
– adding a new binding mechanism for high-level Petri nets, that largely improves

the performance for nets with large color classes but small number of tokens;
– implementing the operational semantics of Simulink;
– adding hooks for multi-model simulation giving a communication framework

between different models. In the case of stochastic net and Simulink co-
simulation, these hooks were instanciated as special transitions in the net.

All these upgrades were illustrated and tested on several toy examples.
We finally proposed two significant case studies for the validation of this
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approach, in the context of the autonomous vehicle. The first one is a motorway
with heavy traffic, and the second one is an entrance ramp to a motorway.

Perspectives
Our perspectives are organised from short to long term.

Short term perspectives. On the theoretical side, we plan to establish the
approximation conjecture possibly with modifications of the current hypotheses.
On the implementation side, while we have formally described Stateflow Charts
in our Simulink semantics, they are not yet integrated into Cosmos. Concerning
case studies, we plan to extend our models to other interesting simple situations:
for instance, the presence of pedestrians or lane reductions.

Middle term perspectives. We have defined the communication between mod-
els in an ad hoc way, which so far only applies to stochastic high-level nets and
Simulink. We plan to define, or use, a pivot formalism to combine several mod-
els that have been designed using various formalisms. This could be based on
the FMI2 [40] standard of the Modelica Association, in a manner similar to its
application to Uppaal [51].

Cosmos has been previously used for the verification of DNA Walkers Cir-
cuits [19]. So the work performed during this thesis could be also used in bioinfor-
matic for more involved case studies. It would require to introduce a dedicated
formalism for designing, for example, regulation circuits, and instanciate them in
the multi-model framework.

Long term perspective. In the IRT SystemX project SVA [68], Wei Chen
started in september 2016 a thesis called Formal Models for the Conceptualization
and Caracterisation of Use Cases for the Autonomous Vehicle to provide a formalism
to generate a large number of situations to be tested [29]. The creation of a tool for
generating scenarios from this new formalism, and the analysis of such scenarios,
could be the subject of another thesis.

2Fonctional Mock-Up Interface
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Titre :Application des méthodes formelles au contrôle du véhicule autonome
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Résumé : Cette thèse s’inscrit dans le cadre de
la conception de véhicules autonomes, et plus
spécifiquement de la vérification de contrôleurs de
tels véhicules. Nos contributions à la résolution de ce
problème sont les suivantes : (1) fournir une syntaxe
et une sémantique pour un modèle de systèmes hy-
brides, (2) étendre les fonctionnalités du model che-
cker statistique Cosmos à ce modèle et (3) valider em-
piriquement la pertinence de notre approche sur des
cas d’étude typiques du véhicule autonome.
Nous avons choisi de combiner le modèle des
réseaux de Petri stochastiques de haut niveau (qui
était le formalisme d’entrée de Cosmos) avec le for-
malisme d’entrée de Simulink afin d’atteindre un pou-
voir d’expression suffisant. En effet Simulink est très
largement utilisé dans le domaine automobile et de
nombreux contrôleurs sont spécifiés avec cet ou-
til. Or Simulink n’a pas de sémantique formellement
définie. Ceci nous a conduit à concevoir une telle

sémantique en deux temps : tout d’abord en intro-
duisant une sémantique dite exacte mais qui n’est
pas opérationnelle puis en la complétant par une
sémantique approchée intégrant le facteur d’approxi-
mation recherché.
Afin de combiner le modèle à événements discrets
des réseaux de Petri et le modèle continu spécifié en
Simulink, nous avons proposé au niveau syntaxique
une interface reposant sur de nouveaux types de tran-
sitions et au niveau sémantique une extension de la
boucle de simulation. L’évaluation de ce nouveau for-
malisme a été entièrement implémentée dans Cos-
mos.
Grace à ce nouveau formalisme, nous avons
développé et étudié les deux cas d’étude suivants :
d’une part une circulation dense sur une section d’au-
toroute et d’autre part l’insertion du véhicule dans une
voie rapide. L’analyse des modélisations correspon-
dantes a démontré la pertinence de notre approche.

Title : Applying Formal Methods to Autonomous Vehicle Verification

Keywords : Simulink, Autonomous Vehicle, Formal Methods, Statistical Model-Checking

Abstract : This thesis takes place in the context of
autonomous vehicle design, and concerns more spe-
cifically the verification of controllers of such vehicles.
Our contributions are the following : (1) give a syntax
and a semantics for a hybrid system model, (2) extend
the capacities of the model-checker Cosmos to that
kind of models, and (3) empirically confirm the rele-
vance of our approach on typical case studies hand-
ling autonomous vehicles.
We chose to combine high-level stochastic Petri nets
(which is the input formalism of Cosmos) with the in-
put formalism of Simulink, to obtain an adequate ex-
pressive power. Indeed, Simulink is largely used in the
automotive industry and numerous controllers have
been specified using this tool. However, there is no
formal semantics for Simulink, which lead us to define

such a semantics in two steps : first, we propose an
exact (but not operational) semantics, then we com-
plete it by an approximate semantics that includes the
targeted approximation level.
In order to combine the discrete event model of Petri
nets and the continous model specified in Simulink,
we define a syntactic interface that relies on new tran-
sition types ; its semantics consists of an extension of
the simulation loop. The evaluation of this new forma-
lism has been entirely implemented into Cosmos.
Using this new formalism, we have designed and stu-
died the two following case studies : on one hand, a
heavy traffic on a motorway segment, and on the other
hand the insertion of a vehicle into a motorway. Our
approach has been validated by the analysis of the
corresponding models.
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